Description
The sensitivity of animal photoreceptors to different wavelengths of light strongly influence the perceived visual contrast of objects in the environment. Outside of the human visual wavelength range, ultraviolet sensitivity in many species provides important and behaviourally relevant visual contrast between objects. However, at the opposite end of the spectrum, the potential advantage of red sensitivity remains unclear. We investigated the potential benefit of long wavelength sensitivity by modelling the visual contrast of a wide range of jewel beetle colours against flowers and leaves of their host plants to hypothetical insect visual systems. We find that the presence of a long wavelength sensitive photoreceptor increases estimated colour contrast, particularly of beetles against leaves. Moreover, under our model parameters, a trichromatic visual system with ultraviolet (λmax = 355 nm), short (λmax = 445 nm) and long (λmax = 600 nm) wavelength photoreceptors performed as well as a tetrachromatic visual system, which had an additional medium wavelength photoreceptor (λmax = 530 nm). When we varied λmax for the long wavelength sensitive receptor in a tetrachromatic system, contrast values between beetles, flowers and leaves were all enhanced with increasing λmax from 580 nm to at least 640 nm. These results suggest a potential advantage of red sensitivity in visual discrimination of insect colours against vegetation and highlight the potential adaptive value of long wavelength sensitivity in insects.
Date made available | 10 Jan 2022 |
---|---|
Publisher | Dryad |