Geographic and temporal morphological stasis in the latest Cretaceous ammonoid Discoscaphites iris from the U.S. Gulf and Atlantic Coastal Plains

  • James Witts (Creator)
  • Corinne Myers (Creator)
  • Matthew Garb (Creator)
  • Kayla Irizarry (Creator)
  • Ekaterina Larina (Creator)
  • Anastasia Rashkova (Creator)
  • Neil H Landman (Creator)

Dataset

Description

We examine temporal and spatial variation in morphology of the ammonoid cephalopod Discoscaphites iris using a large dataset from multiple localities in the Late Cretaceous (Maastrichtian) of the United States Gulf and Atlantic Coastal Plains, spanning a distance of 2000 km along the paleoshoreline. Our results suggest that the fossil record of D. iris is consistent with no within species net accumulation of phyletic evolutionary change across morphological traits or the lifetime of this species. Correlations between some traits and paleoenvironmental conditions as well as changes in the coefficient of variation may support limited population-scale ecophenotypic plasticity, however where stratigraphic data are available, no directional changes in morphology occur prior to the Cretaceous/Paleogene (K/Pg) boundary. This is consistent with models of ‘dynamic’ evolutionary stasis. Combined with knowledge of life history traits and paleoecology of scaphitid ammonoids, specifically a short planktonic phase after hatching followed by transition to a nektobenthic adult stage, these data suggest that scaphitids had significant potential for rapid morphological change in conjunction with limited dispersal capacity. It is therefore likely that evolutionary mode in the Scaphitidae (and potentially across the broader ammonoid clade) follows a model of cladogenesis wherein a dynamic morphological stasis is periodically interrupted by more substantial evolutionary change at speciation events. Finally, the lack of temporal changes in our data suggest that global environmental changes (such as those possibly related to the emplacement of the Deccan Traps Large Igneous Province) had a limited effect on the morphology of North American ammonoid faunas during the latest Cretaceous prior to the K/Pg mass extinction event.
Date made available11 Apr 2022
PublisherDryad

Cite this