Professor Matt W Jones

B.A.(Cantab.), Ph.D.(Bristol)

  • BS8 1TD

19992020

Research output per year

If you made any changes in Pure these will be visible here soon.

Personal profile

Research interests

What kind of neuroscience do you do?

Decades ago, I fell into a pond full of mud and slime.  It so happens that the offending pond is about 150 metres from my Bristol lab and, whenever I see it, I can immediately recall the traumatic scenes of my youth.  How does my brain make this happen?  How are the different facets of my experience – its location, sensory properties and emotional consequences – integrated into memory?  Are the same neurons that were first activated when I hit the murky water still involved in storing and recalling that memory years later?  How has the impact of this pond on my brain informed my behaviour ever since?

We study how neurons distributed across functionally specialised brain regions share information over the course of experience to guide decisions.  Alongside tracking brain activity during behaviour, we are particularly interested in the roles of brain activity during sleep, which is central to fine-tuning and integrating memories (see Gardner et al. 2014 for a review in EJN and Sadowski et al. 2016 for a Cell Reports paper relating sleep to synaptic plasticity).

You can hear Matt talk about sleep here https://www.youtube.com/watch?v=QW2meB1rEaM and here http://www.thenakedscientists.com/HTML/interviews/interview/1001770/

Of course, we are ultimately interested in establishing how and why distributed information processing becomes impaired, including in anxiety, schizophrenia, epilepsy, Alzheimer’s disease and Down Syndrome.  Ullrich explains some of our interests in schizophrenia here http://www.thenakedscientists.com/HTML/interviews/interview/1001769/

How do you do that?

We use a combination of rat or mouse models, human volunteers and patients.

In order to monitor brain activity directly and simultaneously from multiple brain regions in rodents, we implant arrays of recording electrodes into brain regions that act as core nodes during processing of memory, decision-making and aversive or rewarding information: the hippocampus, prefrontal and parietal cortex, amygdala and nucleus accumbens.

Rodent models also allow us to use optogenetics to map or silence specific connections in these circuits, or to model genetic (see Jon’s 2015 Nature Neuroscience paper on Down Syndrome, summarised here http://www.bristol.ac.uk/news/2015/august/down-syndrome.html ) or neurodevelopmental disruption (see Keith and Ullrich’s 2012 Neuron paper, summarised here http://www.bristol.ac.uk/news/2012/8943.html ) associated with disease.  Julia’s Advances in Genetics review explains how we might investigate mechanisms using rodent models (Heckenast et al. 2015).

We have recently started to use data recorded from rodent brains to help interpret human scalp EEG data recorded from healthy volunteers (recruited from http://www.bristol.ac.uk/alspac/ ) or patients (in collaboration with Dara Manoach at MGH and Marianne van den Bree at Cardiff University).  Here’s an example of one study design: http://bmcmedgenet.biomedcentral.com/articles/10.1186/s12881-015-0244-4 

Who’s in the team?

We are a group of postdocs and graduate students (in roughly equal numbers) with a range of backgrounds spanning biochemistry, computer science, electrical engineering, maths, medicine, pharmacology and psychology.  Almost all projects in the lab draw on local, national and international collaborations across all these disciplines – it’s the only way to join all the dots of modern neuroscience.  We have enjoyed successful collaborations with a number of industrial partners over the years, in particular with the Lilly Centre for Cognitive Neuroscience.  Here's Matt talking with the MRC about industrial collaboration: http://www.mrc.ac.uk/skills-careers/overview/case-studies-dr-matt-jones/ 

Fingerprint Dive into the research topics where Matt W Jones is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 3 Similar Profiles

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Projects

Schizophrenia gene

Jones, M. W.

1/07/111/01/15

Project: Research

Research Output

  • 39 Article (Academic Journal)
  • 1 Edited book
  • 1 Chapter in a book
  • 1 Review article (Academic Journal)

A Neurologist's Guide to REM Sleep Behaviour Disorder

Roguski, A., Rayment, D., Whone, A., Jones, M. & Rolinski, M., 25 May 2020, (Accepted/In press) In : Frontiers in Neurology. 32 p.

Research output: Contribution to journalReview article (Academic Journal)

  • Distributed slow-wave dynamics during sleep predict memory consolidation and its impairment in schizophrenia

    Bartsch, U., Simpkin, A. J., Demanuele, C., Wamsley, E., Marston, H. M. & Jones, M. W., 4 Nov 2019, In : npj Schizophrenia. 5, 11 p., 18.

    Research output: Contribution to journalArticle (Academic Journal)

    Open Access
    File
  • 2 Citations (Scopus)
    118 Downloads (Pure)

    Locus Coeruleus tracking of prediction errors optimises cognitive flexibility: An Active Inference model

    Sales, A. C., Friston, K. J., Jones, M. W., Pickering, A. E. & Moran, R. J., 4 Jan 2019, In : PLoS Computational Biology. 15, 1, e1006267.

    Research output: Contribution to journalArticle (Academic Journal)

    Open Access
    File
  • 11 Citations (Scopus)
    225 Downloads (Pure)

    Activities

    • 1 Fellowship awarded competitively