Projects per year
Personal profile
Research interests
Major themes for my research revolve around non-equilibrium phenomena in many-body systems ranging from ultra-cold atoms to strongly correlated electron materials. Specifically, I am interested in:
- Understanding the nature of entanglement, correlations and quantum mutual information in ground states and thermal states of commonly encountered many-body systems. Such properties have striking and deep connections to the classical simulability of quantum systems.
- Exploiting and further developing sophisticated tensor network theory techniques for efficiently simulating many-body quantum systems. Currently this most prominently includes the density matrix renormalization group (DMRG) method and its generalization to time-dependent phenomena via the time-evolving block decimation (TEBD) algorithm applicable to 1D systems. A major long term effort to extend the success of these methods to 2D quantum systems is underway.
- Developing a comprehensive and highly optimised freely available open-source software library for tensor network theory algorithms which can be found at www.tensornetworktheory.org.
- Connecting tensor network theory to enahnce other extremely successful techniques in condensed matter physics, such as variational Monte Carlo and dynamical mean-field theory.
- Applying these toolbox of methods to strongly driven systems to determine how its properties can be controlled on ultra-short timescales, and on longer timescales if it can be stably pushed into new phases not accessible thermally.
- Exploring foundational issues regarding quantum theory including non-locality and quantifying quantumness, as well as connections to thermodynamics of small systems and fluctuation relations.
Fingerprint
- 1 Similar Profiles
Network
-
-
8102 EPSRC - Emerging correlations from strong driving - EP/P025110/2 - facilities budget
24/09/18 → 23/10/19
Project: Research
-
Emerging correlations from strong driving: a tensor network projection variational Monte Carlo approach to 2D quantum lattice systems
24/09/18 → 23/10/19
Project: Research
Research output
-
Neural-network Quantum States for Spin-1 systems: spin-basis and parameterization effects on compactness of representations
Pei, M. Y. & Clark, S. R., 18 May 2021, (Submitted) In: Entropy.Research output: Contribution to journal › Article (Academic Journal) › peer-review
-
Controllable Finite-Momenta Dynamical Quasicondensation in the Periodically Driven One-Dimensional Fermi-Hubbard Model
Cook, M. W. & Clark, S. R., 9 Mar 2020, In: Physical Review A. 101, 3, 17 p., 033604.Research output: Contribution to journal › Article (Academic Journal) › peer-review
Open AccessFile5 Citations (Scopus)71 Downloads (Pure) -
Excitonic and lattice contributions to the charge density wave in 1T-TiSe2 revealed by a phonon bottleneck
Hedayat, H., Sayers, C. J., Bugini, D., Dallera, C., Wolverson, D., Batten, T., Karbassi, S., Friedemann, S., Cerullo, G., Wezel, J. V., Clark, S. R., Carpene, E. & Como, E. D., 26 Sept 2020, In: Physical Review Research. 1, 11 p., 023029.Research output: Contribution to journal › Article (Academic Journal) › peer-review
Open AccessFile147 Downloads (Pure)
Datasets
-
NQS Spin-1 Numerics Data
Clark, S. R. (Creator) & Pei, M. Y. (Creator), University of Bristol, 21 May 2021
DOI: 10.5523/bris.1ln9kyt6i86n12ehhftht27edp, http://data.bris.ac.uk/data/dataset/1ln9kyt6i86n12ehhftht27edp
Dataset
-
Giant rectification in strongly-interacting boundary-driven tilted systems
Clark, S. R. (Creator) & Arenas, J. J. M. (Creator), University of Bristol, 23 Nov 2022
DOI: 10.5523/bris.pc7oy6zea3nx2x35s3nh476jm, http://data.bris.ac.uk/data/dataset/pc7oy6zea3nx2x35s3nh476jm
Dataset
-
NQS Jastrow Numerics Data
Clark, S. R. (Creator) & Pei, M. Y. (Creator), University of Bristol, 21 May 2021
DOI: 10.5523/bris.3dwktrl2yswv72g95mqupoiu3h, http://data.bris.ac.uk/data/dataset/3dwktrl2yswv72g95mqupoiu3h
Dataset