3-D patterning of silicon by laser-initiated, liquid-assisted colloidal (LILAC) lithography

Magdalena Ulmeanu, Michael P Grubb, F Jipa, Benoit Quignon, Michael N R Ashfold

Research output: Contribution to journalArticle (Academic Journal)peer-review

3 Citations (Scopus)
289 Downloads (Pure)

Abstract

We report a comprehensive study of laser-initiated, liquid-assisted colloidal (LILAC) lithography, and illustrate its utility in patterning silicon substrates. The method combines single shot laser irradiation (frequency doubled Ti–sapphire laser, 50 fs pulse duration, 400 nm wavelength) and medium-tuned optical near-field effects around arrays of silica colloidal particles to achieve 3-D surface patterning of silicon. A monolayer (or multilayers) of hexagonal close packed silica colloidal particles act as a mask and offer a route to liquid-tuned optical near field enhancement effects. The resulting patterns are shown to depend on the difference in refractive index of the colloidal particles (ncolloid) and the liquid (nliquid) in which they are immersed. Two different topographies are demonstrated experimentally: (a) arrays of bumps, centred beneath the original colloidal particles, when using liquids with nliquid ncolloid, and (b) a combination of holes, created in the interstices between the colloidal particles, and bumps when using liquids withnliquid ncolloid – and explained with the aid of complementary Mie scattering simulations. The LILAC lithography technique has potential for rapid, large area, organized 3-D patterning of silicon (and related) substrates.

Original languageEnglish
Pages (from-to)258-262
Number of pages5
JournalJournal of Colloid and Interface Science
Volume447
Early online date8 Nov 2014
DOIs
Publication statusPublished - 1 Jun 2015

Bibliographical note

Date of Acceptance: 01/11/2014

Keywords

  • Laser-initiated
  • Liquid-assisted
  • Colloidal lithography

Fingerprint

Dive into the research topics of '3-D patterning of silicon by laser-initiated, liquid-assisted colloidal (LILAC) lithography'. Together they form a unique fingerprint.

Cite this