Abstract
Background
Most colorectal cancers (CRC) arise sporadically from precursor lesions: colonic polyps. Polyp resection prevents progression to CRC. Risk of future polyps is proportional to the number and size of polyps detected at screening, allowing identification of high-risk individuals who may benefit from effective chemoprophylaxis. We aimed to investigate the potential of 5-aminosalicylic acid (5-ASA), a medication used in the treatment of ulcerative colitis, as a possible preventative agent for sporadic CRC.
Methods
Human colorectal adenoma (PC/AA/C1, S/AN/C1 and S/RG/C2), transformed adenoma PC/AA/C1/SB10 and carcinoma cell lines (LS174T and SW620) were treated with 5-ASA. The effect on growth in two- and three-dimensional (3D) culture, β-catenin transcriptional activity and on cancer stemness properties of the cells were investigated.
Results
5-ASA was shown, in vitro, to inhibit the growth of adenoma cells and suppress β-catenin transcriptional activity. Downregulation of β-catenin was found to repress expression of stem cell marker LGR5 (leucine-rich G protein-coupled receptor-5) and functionally suppress stemness in human adenoma and carcinoma cells using 3D models of tumorigenesis.
Conclusions
5-ASA can suppress the cancer stem phenotype in adenoma-derived cells. Affordable and well-tolerated, 5-ASA is an outstanding candidate as a chemoprophylactic medication to reduce the risk of colorectal polyps and CRC in those at high risk.
Most colorectal cancers (CRC) arise sporadically from precursor lesions: colonic polyps. Polyp resection prevents progression to CRC. Risk of future polyps is proportional to the number and size of polyps detected at screening, allowing identification of high-risk individuals who may benefit from effective chemoprophylaxis. We aimed to investigate the potential of 5-aminosalicylic acid (5-ASA), a medication used in the treatment of ulcerative colitis, as a possible preventative agent for sporadic CRC.
Methods
Human colorectal adenoma (PC/AA/C1, S/AN/C1 and S/RG/C2), transformed adenoma PC/AA/C1/SB10 and carcinoma cell lines (LS174T and SW620) were treated with 5-ASA. The effect on growth in two- and three-dimensional (3D) culture, β-catenin transcriptional activity and on cancer stemness properties of the cells were investigated.
Results
5-ASA was shown, in vitro, to inhibit the growth of adenoma cells and suppress β-catenin transcriptional activity. Downregulation of β-catenin was found to repress expression of stem cell marker LGR5 (leucine-rich G protein-coupled receptor-5) and functionally suppress stemness in human adenoma and carcinoma cells using 3D models of tumorigenesis.
Conclusions
5-ASA can suppress the cancer stem phenotype in adenoma-derived cells. Affordable and well-tolerated, 5-ASA is an outstanding candidate as a chemoprophylactic medication to reduce the risk of colorectal polyps and CRC in those at high risk.
Original language | English |
---|---|
Pages (from-to) | 1959-1969 |
Number of pages | 11 |
Journal | British Journal of Cancer |
Volume | 124 |
Issue number | 12 |
Early online date | 30 Mar 2021 |
DOIs | |
Publication status | Published - 8 Jun 2021 |
Bibliographical note
Publisher Copyright:© 2021, The Author(s).
Keywords
- 5-aminosalicylic acid (5-ASA)
- colorectal cancer
- β-catenin
- LGR5