Abstract
Mendelian randomisation (MR) is a method for establishing causality between a risk factor and an outcome by using genetic variants as instrumental variables. In practice, the association between individual genetic variants and the risk factor is often weak, which may lead to a lack of precision in the MR and even biased MR estimates. Usually, the most significant variant within a genetic region is selected to represent the association with the risk factor, but there is no guarantee that this variant will be causal or that it will capture all of the genetic association within the region. It may be advantageous to use extra variants selected from the same region in the MR. The problem is to decide which variants to select. Rather than selecting a specific set of variants, we investigate the use of Bayesian model averaging (BMA) to average the MR over all possible combinations of genetic variants. Our simulations demonstrate that the BMA version of MR outperforms classical estimation with many dependent variants and performs much better than an MR based on variants selected by penalised regression. In further simulations, we investigate robustness to violations in the model assumptions and demonstrate sensitivity to the inclusion of invalid instruments. The method is illustrated by applying it to an MR of the effect of body mass index on blood pressure using SNPs in the FTO gene.
Original language | English |
---|---|
Pages (from-to) | 985-1001 |
Number of pages | 17 |
Journal | Statistics in Medicine |
Volume | 38 |
Issue number | 6 |
Early online date | 28 Nov 2018 |
DOIs | |
Publication status | Published - 15 Mar 2019 |
Keywords
- Bayesian model averaging
- dependent SNPs
- many weak instruments
- Mendelian randomisation