Abstract
Unitary transformations and density matrices are central objects in quantum physics and various tasks require to introduce them in a parameterized form. In this paper we present a parameterization of the unitary group of arbitrary dimension d which is constructed in a composite way. We show explicitly how any element of can be composed of matrix exponential functions of generalized anti-symmetric σ-matrices and one-dimensional projectors. The specific form makes it considerably easy to identify and discard redundant parameters in several cases. In this way, redundancy-free density matrices of arbitrary rank k can be formulated. Our construction can also be used to derive an orthonormal basis of any k-dimensional subspaces of with the minimal number of parameters. As an example it is shown that this feature leads to a significant reduction of parameters in the case of investigating distillability of quantum states via lower bounds of an entanglement measure (the m-concurrence).
Original language | English |
---|---|
Pages (from-to) | 385306 |
Number of pages | 11 |
Journal | Journal of Physics A: Mathematical and Theoretical |
Volume | 43 |
Issue number | 38 |
DOIs | |
Publication status | Published - 24 Sept 2010 |