TY - JOUR
T1 - A constrained least-squares approach to the automated quantitation of in vivo ¹H magnetic resonance spectroscopy data
AU - Wilson, Martin
AU - Reynolds, Greg
AU - Kauppinen, Risto A
AU - Arvanitis, Theodoros N
AU - Peet, Andrew C
N1 - © 2010 Wiley-Liss, Inc.
PY - 2011
Y1 - 2011
N2 - Totally Automatic Robust Quantitation in NMR (TARQUIN), a new method for the fully automatic analysis of short echo time in vivo (1)H Magnetic resonance spectroscopy is presented. Analysis is performed in the time domain using non-negative least squares, and a new method for applying soft constraints to signal amplitudes is used to improve fitting stability. Initial point truncation and Hankel singular value decomposition water removal are used to reduce baseline interference. Three methods were used to test performance. First, metabolite concentrations from six healthy volunteers at 3 T were compared with LCModel™. Second, a Monte-Carlo simulation was performed and results were compared with LCModel™ to test the accuracy of the new method. Finally, the new algorithm was applied to 1956 spectra, acquired clinically at 1.5 T, to test robustness to noisy, abnormal, artifactual, and poorly shimmed spectra. Discrepancies of less than approximately 20% were found between the main metabolite concentrations determined by TARQUIN and LCModel™ from healthy volunteer data. The Monte-Carlo simulation revealed that errors in metabolite concentration estimates were comparable with LCModel™. TARQUIN analyses were also found to be robust to clinical data of variable quality. In conclusion, TARQUIN has been shown to be an accurate and robust algorithm for the analysis of magnetic resonance spectroscopy data making it suitable for use in a clinical setting.
AB - Totally Automatic Robust Quantitation in NMR (TARQUIN), a new method for the fully automatic analysis of short echo time in vivo (1)H Magnetic resonance spectroscopy is presented. Analysis is performed in the time domain using non-negative least squares, and a new method for applying soft constraints to signal amplitudes is used to improve fitting stability. Initial point truncation and Hankel singular value decomposition water removal are used to reduce baseline interference. Three methods were used to test performance. First, metabolite concentrations from six healthy volunteers at 3 T were compared with LCModel™. Second, a Monte-Carlo simulation was performed and results were compared with LCModel™ to test the accuracy of the new method. Finally, the new algorithm was applied to 1956 spectra, acquired clinically at 1.5 T, to test robustness to noisy, abnormal, artifactual, and poorly shimmed spectra. Discrepancies of less than approximately 20% were found between the main metabolite concentrations determined by TARQUIN and LCModel™ from healthy volunteer data. The Monte-Carlo simulation revealed that errors in metabolite concentration estimates were comparable with LCModel™. TARQUIN analyses were also found to be robust to clinical data of variable quality. In conclusion, TARQUIN has been shown to be an accurate and robust algorithm for the analysis of magnetic resonance spectroscopy data making it suitable for use in a clinical setting.
U2 - 10.1002/mrm.22579
DO - 10.1002/mrm.22579
M3 - Article (Academic Journal)
C2 - 20878762
SN - 1522-2594
VL - 65
SP - 1
EP - 12
JO - Magnetic Resonance in Medicine
JF - Magnetic Resonance in Medicine
IS - 1
ER -