A Generic Framework for Handling Constraints with Agent-Based Optimization Algorithms and Application to Aerodynamic Design

Research output: Contribution to journalArticle (Academic Journal)peer-review

6 Citations (Scopus)
241 Downloads (Pure)

Abstract

A generic constraint handling framework for use with any swarm-based optimization algorithm is presented. For swarm optimizers to solve constrained optimization problems effectively modifications have to be made to the optimizers to handle the constraints, however, these constraint handling frameworks are often not universally applicable to all swarm algorithms. A constraint handling framework is therefore presented in this paper that is compatible with any swarm optimizer, such that a user can wrap it around a chosen swarm algorithm and perform constrained optimization. The method, called separation-sub-swarm, works by dividing the population based on the feasibility of individual agents. This allows all feasible agents to move by existing swarm optimizer algorithms, hence promoting good performance and convergence characteristics of individual swarm algorithms. The framework is tested on a suite of analytical test function and a number of engineering benchmark problems, and compared to other generic constraint handling frameworks using four different swarm optimizers; particle swarm, gravitational search, a hybrid algorithm and differential evolution. It is shown that the new framework produces superior results compared to the established frameworks for all four swarm algorithms tested. Finally, the framework is applied to an aerodynamic shape optimization design problem where a shock-free solution is obtained.
Original languageEnglish
Number of pages33
JournalOptimization and Engineering
Early online date24 Nov 2016
DOIs
Publication statusE-pub ahead of print - 24 Nov 2016

Keywords

  • Optimization
  • Constraint Handling
  • Swarm Algorithms
  • Aerodynamic Shape Optimization

Fingerprint

Dive into the research topics of 'A Generic Framework for Handling Constraints with Agent-Based Optimization Algorithms and Application to Aerodynamic Design'. Together they form a unique fingerprint.

Cite this