Abstract
Methods: UK population incidence data (Cancer Research UK) and data from the Cluster Randomized Trial of PSA Testing for Prostate Cancer were combined to estimate age-specific clinically significant prostate cancer incidence (Gleason≥7, stage T3-T4, PSA ≥10, or nodal/distant metastases). Using hazard ratios estimated from the ProtecT prostate cancer trial, age-specific incidence rates were calculated for various PHS risk percentiles. Risk-equivalent age-when someone with a given PHS percentile has prostate cancer risk equivalent to an average 50-year-old man (50-years-standard risk)-was derived from PHS and incidence data. Positive predictive value (PPV) of PSA testing for clinically significant prostate cancer was calculated using PHS-adjusted age groups.
Results: The expected age at diagnosis of clinically significant prostate cancer differs by 19 years between the 1st and 99th PHS percentiles: men with PHS in the 1st and 99th percentiles reach the 50-years-standard risk level at ages 60 and 41, respectively. PPV of PSA was higher for men with higher PHS-adjusted age.
Conclusions: PHS provides individualized estimates of risk-equivalent age for clinically significant prostate cancer. Screening initiation could be adjusted by a man's PHS.
Impact: Personalized genetic risk assessments could inform prostate cancer screening decisions.
Original language | English |
---|---|
Journal | Cancer Epidemiology, Biomarkers and Prevention |
Early online date | 24 Jun 2020 |
DOIs | |
Publication status | E-pub ahead of print - 24 Jun 2020 |