Abstract
A comprehensive review of aerofoil shape parameterisation methods that can be used for aerodynamic shape optimisation is presented. Seven parameterisation methods are considered for a range of design variables: CSTs; B-Splines; Hicks-Henne bump functions; a Radial Basis function (RBF) domain element approach; Bezier surfaces; a singular value decomposition modal extraction method (SVD); and the PARSEC method. Due to the large range of variables involved the most effective way to implement each method is first investigated. Their performance is then analysed by considering the geometric shape recovery of over 2000 aerofoils using a range of design variables, testing the efficiency of design space coverage with respect to a given tolerance. It is shown that, for all the methods, between 20 and 25 design variables are needed to cover the full design space to within a geometric tolerance with the SVD method doing this most efficiently. A set transonic aerofoil case studies are also presented with geometric error and convergence of the resulting aerodynamic properties explored. These results show a strong relationship between geometric error and aerodynamic convergence and demonstrate that between 38 and 66 design variables may be needed to ensure aerodynamic convergence to within one drag and one lift count.
Original language | English |
---|---|
Number of pages | 15 |
Journal | AIAA Journal |
Early online date | 30 Jan 2017 |
DOIs | |
Publication status | E-pub ahead of print - 30 Jan 2017 |
Fingerprint
Dive into the research topics of 'A geometric comparison of aerofoil shape parameterisation methods'. Together they form a unique fingerprint.Profiles
-
Dr Thomas C S Rendall
- Department of Aerospace Engineering - Associate Professor
- Fluid and Aerodynamics
Person: Academic , Member