A KNOX-Cytokinin Regulatory Module Predates the Origin of Indeterminate Vascular Plants

Yoan Coudert, Ondřej Novák, C. Jill Harrison*

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

15 Citations (Scopus)
30 Downloads (Pure)

Abstract

The diverse forms of today's dominant vascular plant flora are generated by the sustained proliferative activity of sporophyte meristems at plants’ shoot and root tips, a trait known as indeterminacy [1]. Bryophyte sister lineages to the vascular plants lack such indeterminate meristems and have an overall sporophyte form comprising a single small axis that ceases growth in the formation of a reproductive sporangium [1]. Genetic mechanisms regulating indeterminacy are well characterized in flowering plants, involving a feedback loop between class I KNOX genes and cytokinin [2, 3], and class I KNOX expression is a conserved feature of vascular plant meristems [4]. The transition from determinate growth to indeterminacy during evolution was a pre-requisite to vascular plant diversification, but mechanisms enabling the innovation of indeterminacy are unknown [5]. Here, we show that class I KNOX gene activity is necessary and sufficient for axis extension from an intercalary region of determinate moss shoots. As in Arabidopsis, class I KNOX activity can promote cytokinin biosynthesis by an ISOPENTENYL TRANSFERASE gene, PpIPT3. PpIPT3 promotes axis extension, and PpIPT3 and exogenously applied cytokinin can partially compensate for loss of class I KNOX function. By outgroup comparison, the results suggest that a pre-existing KNOX-cytokinin regulatory module was recruited into vascular plant shoot meristems during evolution to promote indeterminacy, thereby enabling the radiation of vascular plant shoot forms.

Original languageEnglish
Pages (from-to)2743-2750.e5
Number of pages14
JournalCurrent Biology
Volume29
Issue number16
Early online date1 Aug 2019
DOIs
Publication statusPublished - 19 Aug 2019

Keywords

  • plant evolution
  • evo-devo
  • vascular plant origins
  • ISOPENTENYL TRANSFERASE
  • indeterminacy
  • KNOX-cytokinin

Fingerprint Dive into the research topics of 'A KNOX-Cytokinin Regulatory Module Predates the Origin of Indeterminate Vascular Plants'. Together they form a unique fingerprint.

Cite this