Projects per year
Abstract
We present a derivation of the Kullback Leibler (KL)-Divergence (also known as Relative Entropy) for the von Mises Fisher (VMF) Distribution in d-dimensions.
Original language | English |
---|---|
Number of pages | 8 |
Journal | arXiv |
Publication status | Published - 26 Feb 2015 |
Bibliographical note
8 pages 1 figureStructured keywords
- Digital Health
Keywords
- stat.ML
Fingerprint Dive into the research topics of 'A Note on the Kullback-Leibler Divergence for the von Mises-Fisher distribution'. Together they form a unique fingerprint.
Projects
- 1 Finished
-
SPHERE (EPSRC IRC)
Craddock, I. J., Coyle, D. T., Flach, P. A., Kaleshi, D., Mirmehdi, M., Piechocki, R. J., Stark, B. H., Ascione, R., Ashburn, A. M., Burnett, M. E., Damen, D., Gooberman-Hill, R. J. S., Harwin, W. S., Hilton, G., Holderbaum, W., Holley, A. P., Manchester, V. A., Meller, B. J., Stack, E. & Gilchrist, I. D.
1/10/13 → 30/09/18
Project: Research, Parent