A Novel Approach of Robust Active Compliance for Robot Fingers

J Jalani, Said G Khan, G Herrmann, CR Melhuish

Research output: Chapter in Book/Report/Conference proceedingChapter in a book

Abstract

In order to guarantee that the grasping robot fingers are to be safe when interacting with a human or a touched object, the robot fingers have to be compliant. In this study, a novel active compliant control technique is proposed by employing an Integral sliding Mode Control (ISMC). The ISMC allows us to use a model reference approach for which a virtual mass-spring damper can be introduced for robot fingers. The performance of the ISMC is validated for constrained underactuated BERUL (Bristol Elumotion Robot fingers) fingers. The results show that the approach is feasible for the compliance interaction with objects of different softness and passive compliance. Moreover, the compliance results show that the ISMC is robust towards nonlinearities and uncertainties in particular friction and stiction.
Translated title of the contributionA Novel Approach of Robust Active Compliance for Robot Fingers
Original languageEnglish
Title of host publicationNext Wave in Robotics
Subtitle of host publication14th FIRA RoboWorld Congress, FIRA 2011, Kaohsiung, Taiwan, August 26-30, 2011. Proceedings
EditorsT.H. Li, K.Y. Tu, C.C. Tsai, C.C. Hsu, C.C. Tseng, P. Vadakkepat, J. Baltes, J. Anderson, C.C. Wong, N. Jesse, C.H. Kuo, H.-C. Yang
PublisherSpringer Berlin Heidelberg
Pages50 - 57
Number of pages8
ISBN (Print)9783642231469
DOIs
Publication statusPublished - 2011

Fingerprint

Dive into the research topics of 'A Novel Approach of Robust Active Compliance for Robot Fingers'. Together they form a unique fingerprint.

Cite this