Projects per year
Abstract
A new formulation of the Auxiliary Difference Equation (ADE) Finite Difference Time Domain (FDTD) algorithm for the simulation of dispersive materials has been presented in the literature. Although flexible and efficient, this algorithm suffers from instability when modelling lossy high contrast dielectrics. In this paper we adapt this ADE-FDTD formulation and present alternative algorithms for modelling static conductivity and Debye dispersion. The stability of these algorithms is assessed by numerical simulation in a wide variety of dielectric
media and their performance is compared to the existing algorithm by means of a simulation of the reflection of a plane wave from a dielectric boundary. Results and comparison with theory demonstrate the stability and accuracy of the new methods. The flexibility, computational efficiency and ability to model a wide range of materials make these new methods highly attractive compared to other dispersive FDTD algorithms, particularly for modelling materials with multiple dispersion models.
media and their performance is compared to the existing algorithm by means of a simulation of the reflection of a plane wave from a dielectric boundary. Results and comparison with theory demonstrate the stability and accuracy of the new methods. The flexibility, computational efficiency and ability to model a wide range of materials make these new methods highly attractive compared to other dispersive FDTD algorithms, particularly for modelling materials with multiple dispersion models.
Original language | English |
---|---|
Pages (from-to) | 2401-2409 |
Number of pages | 9 |
Journal | IEEE Transactions on Antennas and Propagation |
Volume | 64 |
Issue number | 6 |
Early online date | 4 Apr 2016 |
DOIs | |
Publication status | Published - Jun 2016 |
Structured keywords
- Digital Health
Keywords
- FDTD methods
- electromagnetic propagation in dispersive media
- dispersive media
Fingerprint Dive into the research topics of 'A Numerical Study of Debye and Conductive Dispersion in High Dielectric Materials Using a General ADE-FDTD Algorithm'. Together they form a unique fingerprint.
Projects
- 1 Finished
-
SPHERE (EPSRC IRC)
Craddock, I. J., Coyle, D. T., Flach, P. A., Kaleshi, D., Mirmehdi, M., Piechocki, R. J., Stark, B. H., Ascione, R., Ashburn, A. M., Burnett, M. E., Damen, D., Gooberman-Hill, R. J. S., Harwin, W. S., Hilton, G., Holderbaum, W., Holley, A. P., Manchester, V. A., Meller, B. J., Stack, E. & Gilchrist, I. D.
1/10/13 → 30/09/18
Project: Research, Parent
Profiles
-
Professor Ian J Craddock
- Senior Team - University Lead on Digital Health
- Department of Electrical & Electronic Engineering - Professor
- Elizabeth Blackwell Institute for Health Research
- Cabot Institute for the Environment
- Communication Systems and Networks
Person: Academic , Member