TY - JOUR
T1 - A q-weighted version of the Robinson-Schensted algorithm
AU - O'Connell, Neil
AU - Pei, Yuchen
PY - 2013/10/29
Y1 - 2013/10/29
N2 - We introduce a q-weighted version of the Robinson-Schensted (column insertion) algorithm which is closely connected to q-Whittaker functions (or Macdonald polynomials with t = 0) and reduces to the usual Robinson-Schensted algorithm when q = 0. The q-insertion algorithm is 'randomised', or 'quantum', in the sense that when inserting a positive integer into a tableau, the output is a distribution of weights on a particular set of tableaux which includes the output which would have been obtained via the usual column insertion algorithm. There is also a notion of recording tableau in this setting. We show that the distribution of weights of the pair of tableaux obtained when one applies the q-insertion algorithm to a random word or permutation takes a particularly simple form and is closely related to q-Whittaker functions. In the case 0 ≤ q <1, the q-insertion algorithm applied to a random word also provides a new framework for solving the q-TASEP interacting particle system introduced (in the language of q-bosons) by Sasamoto and Wadati [41] and yields formulas which are equivalent to some of those recently obtained by Borodin and Corwin [7] via a stochastic evolution on discrete Gelfand-Tsetlin patterns (or semistandard tableaux) which is coupled to the q-TASEP. We show that the sequence of P-tableaux obtained when one applies the q-insertion algorithm to a random word defines another, quite different, evolution on semistandard tableaux which is also coupled to the q-TASEP.
AB - We introduce a q-weighted version of the Robinson-Schensted (column insertion) algorithm which is closely connected to q-Whittaker functions (or Macdonald polynomials with t = 0) and reduces to the usual Robinson-Schensted algorithm when q = 0. The q-insertion algorithm is 'randomised', or 'quantum', in the sense that when inserting a positive integer into a tableau, the output is a distribution of weights on a particular set of tableaux which includes the output which would have been obtained via the usual column insertion algorithm. There is also a notion of recording tableau in this setting. We show that the distribution of weights of the pair of tableaux obtained when one applies the q-insertion algorithm to a random word or permutation takes a particularly simple form and is closely related to q-Whittaker functions. In the case 0 ≤ q <1, the q-insertion algorithm applied to a random word also provides a new framework for solving the q-TASEP interacting particle system introduced (in the language of q-bosons) by Sasamoto and Wadati [41] and yields formulas which are equivalent to some of those recently obtained by Borodin and Corwin [7] via a stochastic evolution on discrete Gelfand-Tsetlin patterns (or semistandard tableaux) which is coupled to the q-TASEP. We show that the sequence of P-tableaux obtained when one applies the q-insertion algorithm to a random word defines another, quite different, evolution on semistandard tableaux which is also coupled to the q-TASEP.
KW - Macdonald polynomials
KW - Q-whittaker functions
UR - http://www.scopus.com/inward/record.url?scp=84886863441&partnerID=8YFLogxK
U2 - 10.1214/EJP.v18-2930
DO - 10.1214/EJP.v18-2930
M3 - Article (Academic Journal)
AN - SCOPUS:84886863441
SN - 1083-6489
VL - 18
JO - Electronic Journal of Probability
JF - Electronic Journal of Probability
M1 - 95
ER -