Abstract
Catalytically active materials for the enhancement of personalized protective equipment (PPE) could be advantageous to help alleviate threats posed by neurotoxic organophosphorus compounds (OPs). Accordingly, a chimeric protein comprised of a supercharged green fluorescent protein (scGFP) and phosphotriesterase from Agrobacterium radiobacter (arPTE) was designed to drive the polymer surfactant (S–)-mediated self-assembly of microclusters to produce robust, enzymatically active materials. The chimera scGFP-arPTE was structurally characterized via circular dichroism spectroscopy and synchrotron radiation small-angle X-ray scattering, and its biophysical properties were determined. Significantly, the chimera exhibited greater thermal stability than the native constituent proteins, as well as a higher catalytic turnover number (kcat). Furthermore, scGFP-arPTE was electrostatically complexed with monomeric S–, driving self-assembly into [scGFP-arPTE][S–] nanoclusters, which could be dehydrated and cross-linked to yield enzymatically active [scGFP-arPTE][S–] porous films with a high-order structure. Moreover, these clusters could self-assemble within cotton fibers to generate active composite textiles without the need for the pretreatment of the fabrics. Significantly, the resulting materials maintained the biophysical activities of both constituent proteins and displayed recyclable and persistent activity against the nerve agent simulant paraoxon.
Original language | English |
---|---|
Pages (from-to) | 60433−60445 |
Number of pages | 13 |
Journal | ACS Applied Materials and Interfaces |
Volume | 13 |
Issue number | 50 |
Early online date | 13 Dec 2021 |
DOIs | |
Publication status | Published - 22 Dec 2021 |
Bibliographical note
Funding Information:This research was funded by the Defence Science and Technology Laboratory (Dstl) and we thank them for this. We thank EPSRC (Early Career Fellowship EP/K026720/1) and UKRI (Future Leaders Fellowship MR/ S016430/1) for the support of Professor Adam W. Perriman. We are grateful for the time allocation from Diamond Light Source, which allowed SR–S/WAXS experiments to be performed on the I22 beamline (proposal SM17972) and bio-SAXS on the B21 beamline (proposal SM16970). We would like to thank the beamline scientists for their help. We would also like to acknowledge the Wolfson Bioimaging Centre (BBSRC Alert 13 capital grant BB/L014181/1) at the University of Bristol.
Publisher Copyright:
© 2021 American Chemical Society
Keywords
- composite material
- active material
- hierarchical self-assembly
- bifunctionality
- catalysis
- decontamination
- enzyme