A simplified discrete finite element model for non-crimped fabric composites

C Knipprath, AA Skordos, AK Pickett

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)


This paper introduces a simplified method for the modelling of tow based composite materials that allows the representation of varying material properties and fibre architecture. Traditionally two different approaches are utilised to simulate the mechanical behaviour of composites: (i) continuum models in which homogenised material properties are used [1]; and (ii) discrete models in which resin and fibre tows are represented as separate materials [2]. Continuum models are computationally efficient and thus appropriate for modelling the mechanical response of relatively large structures, whereas discrete models operate at the meso-level and offer greater predictive capabilities at the cost of expensive solutions. The methodology proposed here is based on the concepts developed for modelling the draping of non-crimp fabrics [3] and constitutes an intermediate solution that combines relative computational efficiency with the capability to model fibre tows and resin separately. This type of representation allows easy incorporation of the influence of locally inserted binder tows in a finite element with respect to both variations in material properties and local tow architecture.
Translated title of the contributionA simplified discrete finite element model for non-crimped fabric composites
Original languageEnglish
Title of host publication13th European Conference on Composite Materials, Stockholm, Sweden, June 2-5, 2008
Publication statusPublished - Jun 2008

Bibliographical note

Conference Organiser: KTH & Swerea SICOMP


Dive into the research topics of 'A simplified discrete finite element model for non-crimped fabric composites'. Together they form a unique fingerprint.

Cite this