A Synoptic View of the Third Uniform California Earthquake Rupture Forecast (UCERF3)

Edward H. Field, Thomas H. Jordan, Morgan T. Page, Kevin R. Milner, Bruce E. Shaw, Timothy E. Dawson, Glenn P. Biasi, Tom Parsons, Jeanne L. Hardebeck, Nicholas van der Elst, Andrew J. Michael, Ray J. Weldon, II, Peter M. Powers, Kaj M. Johnson, Yuehua Zeng, Peter Bird, Karen R. Felzer, Nicholas van der Elst, Christopher Madden, Ramon ArrowsmithMaximilian Werner, Wayne Thatcher, David D. Jackson

Research output: Contribution to journalArticle (Academic Journal)

31 Citations (Scopus)
341 Downloads (Pure)

Abstract

Probabilistic forecasting of earthquake-producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long-term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short-term (hours to years) probabilities of distributed seismicity, constrained by earthquake clustering statistics. Comprehensive datasets on both hazard scales have been integrated into the Uniform California Earthquake Rupture Forecast, Version 3. UCERF3 is the first model to provide self-consistent rupture probabilities over forecasting intervals from less than an hour to more than a century, and the first capable of evaluating the short-term hazards due to multi-event sequences of complex faulting. This paper gives an overview of UCERF3, illustrates the short-term probabilities with aftershock scenarios, and draws some valuable scientific conclusions from the modeling results. In particular, seismic, geologic, and geodetic data, when combined in the UCERF3 framework, reject two types of fault-based models: long-term forecasts constrained to have local Gutenberg.
Original languageEnglish
Pages (from-to)1259-1267
Number of pages9
JournalSeismological Research Letters
Volume88
Issue number5
Early online date12 Jul 2017
DOIs
Publication statusPublished - Sep 2017

Fingerprint Dive into the research topics of 'A Synoptic View of the Third Uniform California Earthquake Rupture Forecast (UCERF3)'. Together they form a unique fingerprint.

Cite this