Abstract
Semantic segmentation of remotely sensed imagery plays a critical role in many real-world applications, such as environmental change monitoring, precision agriculture, environmental protection, and economic assessment. Following rapid developments in sensor technologies, vast numbers of fine-resolution satellite and airborne remote sensing images are now available, for which semantic segmentation is potentially a valuable method. However, because of the rich complexity and heterogeneity of information provided with an ever-increasing spatial resolution, state-of-the-art deep learning algorithms commonly adopt complex network structures for segmentation, which often result in significant computational demand. Particularly, the frequently-used fully convolutional network (FCN) relies heavily on fine-grained spatial detail (fine spatial resolution) and contextual information (large receptive fields), both imposing high computational costs. This impedes the practical utility of FCN for real-world applications, especially those requiring real-time data processing. In this paper, we propose a novel Attentive Bilateral Contextual Network (ABCNet), a lightweight convolutional neural network (CNN) with a spatial path and a contextual path. Extensive experiments, including a comprehensive ablation study, demonstrate that ABCNet has strong discrimination capability with competitive accuracy compared with state-of-the-art benchmark methods while achieving significantly increased computational efficiency. Specifically, the proposed ABCNet achieves a 91.3% overall accuracy (OA) on the Potsdam test dataset and outperforms all lightweight benchmark methods significantly. The code is freely available at https://github.com/lironui/ABCNet.
Original language | English |
---|---|
Pages (from-to) | 84-98 |
Number of pages | 15 |
Journal | ISPRS Journal of Photogrammetry and Remote Sensing |
Volume | 181 |
DOIs | |
Publication status | Published - 30 Nov 2021 |
Bibliographical note
Funding Information:This research was funded by the National Natural Science Foundation of China , Grant No. 41671452 .
Publisher Copyright:
© 2021 The Authors
Keywords
- Attention Mechanism
- Bilateral Architecture
- Convolutional Neural Network
- Deep Learning
- Semantic Segmentation