Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS

Pierre Bonnand*, Ian J. Parkinson, Rachael H. James, Anne-Mari Karjalainen, Manuela A. Fehr

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

79 Citations (Scopus)

Abstract

Techniques for the separation of small quantities of Cr from carbonate material and for the analysis of stable Cr isotopes in carbonates by MC-ICP-MS are presented in this study. In comparison with previously published methods, we have developed a one-step Cr separation procedure that is relatively simple, and has a low blank (0.12-0.20 ng). Moreover, careful optimisation of the desolvating sample introduction system allows a significant increase in the sensitivity of our MC-ICP-MS technique compared to previous studies. Instrumental mass bias effects and fractionation of Cr isotopes during Cr separation are corrected using a carefully optimised (50)Cr-(54)Cr double-spike method. Novel numerical simulations demonstrate that the effects of potential isobaric interferences from Ti, Fe and V are negligible, even if they are isotopically fractionated. Small deviations in the delta(53)Cr value of the NBS 979 standard between different analytical sessions are due to small deviations from exponential mass fractionation behaviour. The long-term reproducibility of delta(53)Cr for a spiked NBS 979 Cr isotope reference material is +/-0.031 parts per thousand (2 S. D., n = 147). Analyses of carbonates reveal that they have delta(53)Cr values of 0.747 to 1.994 parts per thousand, distinctly heavier than continental crust and the terrestrial mantle. The carbonates record Cr isotopic fractionation that may be used to understand redox reactions in the oceans. Although this study focuses on carbonate samples, our mass spectrometry technique can be applied to the analysis of any samples with low levels of Cr, including river waters and seawater.

Original languageEnglish
Pages (from-to)528-535
Number of pages8
JournalJournal of Analytical Atomic Spectrometry
Volume26
Issue number3
DOIs
Publication statusPublished - 2011

Keywords

  • EARTH
  • SAMPLES
  • ANOMALIES
  • ELEMENTS
  • FRACTIONATION
  • RATIOS
  • CHROMIUM ISOTOPES
  • ENVIRONMENT
  • EARLY SOLAR-SYSTEM
  • MASS-SPECTROMETRY

Cite this