Skip to content

Acoustic Hologram Enhanced Phased Arrays for Ultrasonic Particle Manipulation

Research output: Contribution to journalArticle

Original languageEnglish
Article number064055
Number of pages9
JournalPhysical Review Applied
Volume12
Issue number6
DOIs
DateAccepted/In press - 12 Dec 2019
DatePublished (current) - 26 Dec 2019

Abstract

The ability to shape ultrasound fields is important for particle manipulation, medical therapeutics, and imaging applications. If the amplitude and/or phase is spatially varied across the wave front, then it is possible to project “acoustic images.” When attempting to form an arbitrary desired static sound field, acoustic holograms are superior to phased arrays due to their significantly higher phase fidelity. However, they lack the dynamic flexibility of phased arrays. Here, we demonstrate how to combine the high-fidelity advantages of acoustic holograms with the dynamic control of phased arrays in the ultrasonic frequency range. Holograms are used with a 64-element phased array, driven with continuous excitation. Movement of the position of the projected hologram via phase delays that steer the output beam is demonstrated experimentally. This allows the creation of a much more tightly focused point than with the phased array alone, while still being reconfigurable. It also allows the complex movement at a water-air interface of a “phase surfer” along a phase track or the manipulation of a more arbitrarily shaped particle via amplitude traps. Furthermore, a particle manipulation device with two emitters and a single split hologram is demonstrated that allows the positioning of a “phase surfer” along a one-dimensional axis. This paper opens the door for new applications with complex manipulation of ultrasound while minimizing the complexity and cost of the apparatus.

    Research areas

  • acoustic modeling, acoustic wave phenomena, beam techniques, holography, ultrasonics, underwater acoustics, cells, optical tweezers

Download statistics

No data available

Documents

Documents

  • Full-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via American Physical Society at https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.12.064055 . Please refer to any applicable terms of use of the publisher.

    Final published version, 2 MB, PDF document

    Licence: CC BY

DOI

View research connections

Related faculties, schools or groups