Activation of the Pro-Oxidant PKCβII-p66Shc Signaling Pathway Contributes to Pericyte Dysfunction in Skeletal Muscles of Patients With Diabetes With Critical Limb Ischemia

Rosa Vono, Claudia Fuoco, Stefano Testa, Stefano Pirró, Davide Maselli, David Ferland McCollough, Elena Sangalli, Gianfranco Pintus, Roberta Giordo, Giovanna Finzi, Fausto Sessa, Rosanna Cardani, Ambra Gotti, Sergio Losa, Gianni Cesareni, Roberto Rizzi, Claudia Bearzi, Stefano Cannata, Gaia Spinetti, Cesare GargioliPaolo Madeddu*

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

30 Citations (Scopus)
233 Downloads (Pure)

Abstract

Critical limb ischemia (CLI), foot ulcers, former amputation, and impaired regeneration are independent risk factors for limb amputation in subjects with diabetes. The present work investigates whether and by which mechanism diabetes negatively impacts on functional properties of muscular pericytes (MPs), which are resident stem cells committed to reparative angiomyogenesis. We obtained muscle biopsy samples from patients with diabetes who were undergoing major limb amputation and control subjects. Diabetic muscles collected at the rim of normal tissue surrounding the plane of dissection showed myofiber degeneration, fat deposition, and reduction of MP vascular coverage. Diabetic MPs (D-MPs) display ultrastructural alterations, a differentiation bias toward adipogenesis at the detriment of myogenesis and an inhibitory activity on angiogenesis. Furthermore, they have an imbalanced redox state, with downregulation of the antioxidant enzymes superoxide dismutase 1 and catalase, and activation of the pro-oxidant protein kinase C isoform β-II (PKCβII)- dependent p66Shc signaling pathway. A reactive oxygen species scavenger or, even more effectively, clinically approved PKCβII inhibitors restore D-MP angiomyogenic activity. Inhibition of the PKCβII-dependent p66Shc signaling pathway could represent a novel therapeutic approach for the promotion of muscle repair in individuals with diabetes.

Original languageEnglish
Pages (from-to)3691-3704
Number of pages14
JournalDiabetes
Volume65
Issue number12
Early online date6 Sep 2016
DOIs
Publication statusPublished - 22 Nov 2016

Fingerprint

Dive into the research topics of 'Activation of the Pro-Oxidant PKCβII-p66<sup>Shc</sup> Signaling Pathway Contributes to Pericyte Dysfunction in Skeletal Muscles of Patients With Diabetes With Critical Limb Ischemia'. Together they form a unique fingerprint.

Cite this