Adaptive incremental stippling for sample distribution in spatially adaptive PIV image analysis

M. Edwards, R. Theunissen

Research output: Contribution to journalArticle (Academic Journal)peer-review

3 Citations (Scopus)
160 Downloads (Pure)


Adaptive sampling strategies in PIV have been shown to efficiently combine the need for limited user-dependence with increased performances in terms of spatial resolution and computational effort, thus rendering such approaches of great interest. The allocation of correlation windows across the spatial image domain is dependent on the interpretation of an underlying objective function, and the distribution of windows accordingly. It is important that such allocation is computationally efficient, robust to changing objective functions and conditions, and conducive to high quality sampling. In this paper, an alternative sample distribution method, based on adaptive incremental stippling, is presented and shown to combine the speed of PDF-based methods with the quality of 'ideal' spring-force methods. Case-dependent parameter tuning is no longer necessary, thus improving robustness. In addition, an algorithm to adaptively size initial correlation windows is proposed to further minimise user dependence.

Original languageEnglish
Article number065301
Number of pages12
JournalMeasurement Science and Technology
Issue number6
Publication statusPublished - 10 May 2019


  • adaptive incremental stippling
  • adaptive sampling
  • spring force


Dive into the research topics of 'Adaptive incremental stippling for sample distribution in spatially adaptive PIV image analysis'. Together they form a unique fingerprint.

Cite this