TY - JOUR
T1 - Adaptive self-organization in a realistic neural network model
AU - Meisel, Christian
AU - Gross, Thilo
PY - 2009
Y1 - 2009
N2 - Information processing in complex systems is often found to be maximally efficient close to critical states associated with phase transitions. It is therefore conceivable that also neural information processing operates close to criticality. This is further supported by the observation of power-law distributions, which are a hallmark of phase transitions. An important open question is how neural networks could remain close to a critical point while undergoing a continual change in the course of development, adaptation, learning, and more. An influential contribution was made by Bornholdt and Rohlf, introducing a generic mechanism of robust self-organized criticality in adaptive networks. Here, we address the question whether this mechanism is relevant for real neural networks. We show in a realistic model that spike-time-dependent synaptic plasticity can self-organize neural networks robustly toward criticality. Our model reproduces several empirical observations and makes testable predictions on the distribution of synaptic strength, relating them to the critical state of the network. These results suggest that the interplay between dynamics and topology may be essential for neural information processing.
AB - Information processing in complex systems is often found to be maximally efficient close to critical states associated with phase transitions. It is therefore conceivable that also neural information processing operates close to criticality. This is further supported by the observation of power-law distributions, which are a hallmark of phase transitions. An important open question is how neural networks could remain close to a critical point while undergoing a continual change in the course of development, adaptation, learning, and more. An influential contribution was made by Bornholdt and Rohlf, introducing a generic mechanism of robust self-organized criticality in adaptive networks. Here, we address the question whether this mechanism is relevant for real neural networks. We show in a realistic model that spike-time-dependent synaptic plasticity can self-organize neural networks robustly toward criticality. Our model reproduces several empirical observations and makes testable predictions on the distribution of synaptic strength, relating them to the critical state of the network. These results suggest that the interplay between dynamics and topology may be essential for neural information processing.
U2 - 10.1103/PhysRevE.80.061917
DO - 10.1103/PhysRevE.80.061917
M3 - Article (Academic Journal)
C2 - 20365200
SN - 1539-3755
VL - 80
JO - Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
M1 - 061917
ER -