TY - JOUR
T1 - Adiponectin controls the apoptosis and the expression of tight junction proteins in brain endothelial cells through AdipoR1 under beta amyloid toxicity
AU - Song, Juhyun
AU - Choi, Seong Min
AU - Whitcomb, Daniel J.
AU - Kim, Byeong C.
PY - 2017/10/12
Y1 - 2017/10/12
N2 - Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by excessive beta amyloid (Aβ) deposition in brain, leading to blood-brain barrier (BBB) disruption. The mechanisms of BBB disruption in AD are still unclear, despite considerable research. The adipokine adiponectin is known to regulate various metabolic functions and reduce inflammation. Though adiponectin receptors have been reported in the brain, its role in the central nervous system has not been fully characterized. In the present study, we investigate whether adiponectin contributes to the tight junction integrity and cell death of brain endothelial cells under Aβ-induced toxicity conditions. We measured the expression of adiponectin receptors (AdipoR1 and AdipoR2) and the alteration of tight junction proteins in in vivo 5xFAD mouse brain. Moreover, we examined the production of reactive oxygen species (ROS) and the loss of tight junction proteins such as Claudin 5, ZO-1, and inflammatory signaling in in vitro brain endothelial cells (bEnd.3 cells) under Aβ toxicity. Our results showed that Acrp30 (a globular form of adiponectin) reduces the expression of proinflammatory cytokines and the expression of RAGE as Aβ transporters into brain. Moreover, we found that Acrp 30 attenuated the apoptosis and the tight junction disruption through AdipoR1-mediated NF-κB pathway in Aβ-exposed bEnd.3 cells. Thus, we suggest that adiponectin is an attractive therapeutic target for treating BBB breakdown in AD brain.
AB - Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by excessive beta amyloid (Aβ) deposition in brain, leading to blood-brain barrier (BBB) disruption. The mechanisms of BBB disruption in AD are still unclear, despite considerable research. The adipokine adiponectin is known to regulate various metabolic functions and reduce inflammation. Though adiponectin receptors have been reported in the brain, its role in the central nervous system has not been fully characterized. In the present study, we investigate whether adiponectin contributes to the tight junction integrity and cell death of brain endothelial cells under Aβ-induced toxicity conditions. We measured the expression of adiponectin receptors (AdipoR1 and AdipoR2) and the alteration of tight junction proteins in in vivo 5xFAD mouse brain. Moreover, we examined the production of reactive oxygen species (ROS) and the loss of tight junction proteins such as Claudin 5, ZO-1, and inflammatory signaling in in vitro brain endothelial cells (bEnd.3 cells) under Aβ toxicity. Our results showed that Acrp30 (a globular form of adiponectin) reduces the expression of proinflammatory cytokines and the expression of RAGE as Aβ transporters into brain. Moreover, we found that Acrp 30 attenuated the apoptosis and the tight junction disruption through AdipoR1-mediated NF-κB pathway in Aβ-exposed bEnd.3 cells. Thus, we suggest that adiponectin is an attractive therapeutic target for treating BBB breakdown in AD brain.
UR - http://www.scopus.com/inward/record.url?scp=85031288926&partnerID=8YFLogxK
U2 - 10.1038/cddis.2017.491
DO - 10.1038/cddis.2017.491
M3 - Article (Academic Journal)
C2 - 29022894
AN - SCOPUS:85031288926
SN - 2041-4889
VL - 8
JO - Cell Death and Disease
JF - Cell Death and Disease
IS - 10
M1 - e3102
ER -