TY - JOUR
T1 - An amortized-complexity method to compute the Riemann zeta function
AU - Hiary, Ghaith
PY - 2011
Y1 - 2011
N2 - A practical method to compute the Riemann zeta function is presented. The method can compute at any points in using an average time of per point. This is the same complexity as the Odlyzko-Schönhage algorithm over that interval. Although the method far from competes with the Odlyzko-Schönhage algorithm over intervals much longer than , it still has the advantages of being elementary, simple to implement, it does not use the fast Fourier transform or require large amounts of storage space, and its error terms are easy to control. The method has been implemented, and results of timing experiments agree with its theoretical amortized complexity of .
AB - A practical method to compute the Riemann zeta function is presented. The method can compute at any points in using an average time of per point. This is the same complexity as the Odlyzko-Schönhage algorithm over that interval. Although the method far from competes with the Odlyzko-Schönhage algorithm over intervals much longer than , it still has the advantages of being elementary, simple to implement, it does not use the fast Fourier transform or require large amounts of storage space, and its error terms are easy to control. The method has been implemented, and results of timing experiments agree with its theoretical amortized complexity of .
U2 - http://dx.doi.org/10.1090/S0025-5718-2011-02452-X
DO - http://dx.doi.org/10.1090/S0025-5718-2011-02452-X
M3 - Article (Academic Journal)
VL - 80
SP - 1785
EP - 1796
JO - Mathematics of Computation
JF - Mathematics of Computation
SN - 0025-5718
IS - 275
ER -