TY - JOUR
T1 - An empirical study on transmission beamforming for ultrasonic guided-wave based structural health monitoring
AU - Cantero-Chinchilla, Sergio
AU - Aranguren, Gerardo
AU - Malik, Muhammad Khalid
AU - Etxaniz, Josu
AU - de la Escalera, Federico Martín
PY - 2020/3/1
Y1 - 2020/3/1
N2 - The development of reliable structural health monitoring techniques is enabling a healthy transition from preventive to condition-based maintenance, hence leading to safer and more efficient operation of different industries. Ultrasonic guided-wave based beamforming is one of the most promising techniques, which supports the monitoring of large thin-walled structures. However, beamforming has been typically applied to the post-processing stage (also known as virtual or receiver beamforming) because transmission or physical beamforming requires complex hardware configurations. This paper introduces an electronic structural health monitoring system that carries out transmission beamforming experiments by simultaneously emitting and receiving ultrasonic guided-waves using several transducers. An empirical characterization of the transmission beamforming technique for monitoring an aluminum plate is provided in this work. The high signal-to-noise ratio and accurate angular precision of the physical signal obtained in the experiments suggest that transmission beamforming can increase the reliability and robustnessof this monitoring technique for large structures and in real-world noisy environments.
AB - The development of reliable structural health monitoring techniques is enabling a healthy transition from preventive to condition-based maintenance, hence leading to safer and more efficient operation of different industries. Ultrasonic guided-wave based beamforming is one of the most promising techniques, which supports the monitoring of large thin-walled structures. However, beamforming has been typically applied to the post-processing stage (also known as virtual or receiver beamforming) because transmission or physical beamforming requires complex hardware configurations. This paper introduces an electronic structural health monitoring system that carries out transmission beamforming experiments by simultaneously emitting and receiving ultrasonic guided-waves using several transducers. An empirical characterization of the transmission beamforming technique for monitoring an aluminum plate is provided in this work. The high signal-to-noise ratio and accurate angular precision of the physical signal obtained in the experiments suggest that transmission beamforming can increase the reliability and robustnessof this monitoring technique for large structures and in real-world noisy environments.
KW - Phased-array
KW - SHM
KW - Structural inspection
KW - Transmission beamforming
KW - Ultrasonic guided-waves
UR - http://www.scopus.com/inward/record.url?scp=85081138930&partnerID=8YFLogxK
U2 - 10.3390/s20051445
DO - 10.3390/s20051445
M3 - Article (Academic Journal)
C2 - 32155810
AN - SCOPUS:85081138930
SN - 1424-8220
VL - 20
JO - Sensors (Switzerland)
JF - Sensors (Switzerland)
IS - 5
M1 - 1445
ER -