An Energetically-Autonomous Robotic Tadpole with Single Membrane Stomach and Tail

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

9 Citations (Scopus)


We present an energetically autonomous robotic tadpole that uses a single membrane component for both electrical energy generation and propulsive actuation. The coupling of this small bio-inspired power source to a bio-inspired actuator demonstrates the first generation design for an energetically autonomous swimming robot consisting of a single membrane. An ionic polymer metal composite (IPMC) with a Nafion polymer layer is demonstrated in a novel application as the ion exchange membrane and anode and cathode electrode of a microbial fuel cell (MFC), whilst being used concurrently as an artificial muscle tail. In contrast to previous work using stacked units for increased voltage, a single MFC with novel, 0.88ml anode chamber architecture is used to generate suitable voltages for driving artificial muscle actuation, with minimal step up. This shows the potential of the small forces generated by IPMCs for propulsion of a bio-energy source. The work demonstrates great potential for reducing the mass and complexity of bio-inspired autonomous robots. The performance of the IPMC as an ion exchange membrane is compared to two conventional ion exchange membranes, Nafion and cation exchange membrane (CEM). The MFC anode and cathode show increased resistance following inclusion within the MFC environment.
Original languageEnglish
Title of host publicationProceedings of 4th International Conference on Biomimetic and Biohybrid Systems
Subtitle of host publicationLiving Machines 2015
PublisherSpringer, Cham
Number of pages23
ISBN (Electronic)978-3-319-22979-9
ISBN (Print)978-3-319-22978-2
Publication statusPublished - 28 Jul 2015
EventLiving Machines - Barcelona, United Kingdom
Duration: 28 Jul 201531 Jul 2015


ConferenceLiving Machines
Country/TerritoryUnited Kingdom

Structured keywords

  • Tactile Action Perception


Dive into the research topics of 'An Energetically-Autonomous Robotic Tadpole with Single Membrane Stomach and Tail'. Together they form a unique fingerprint.

Cite this