TY - JOUR
T1 - An exploration of interactions between the antiarrhythmic drug dronedarone and the hERG potassium channel pore
AU - Zhang, Yi H
AU - Colenso, Charlie
AU - Dempsey, Christopher
AU - Hancox, Jules
PY - 2018/8/31
Y1 - 2018/8/31
N2 - Dronedarone is a non-iodinated analogue of the Class III antiarrhythmic agent amiodarone. It exerts potent inhibition of “hERG” potassium channels that underpin the cardiac rapid delayed rectifier potassium current, IKr. This study aimed to extend understanding of interactions between dronedarone and the hERG channel. Whole-cell patch-clamp recordings were made at 37C of hERG channel current (IhERG) from HEK-293 cells expressing wild-type (WT) hERG or alanine mutants of residues in the channel’s pore-helix/selectivity filter region (T623, S624, V625) or S6 helices (S649, Y652, F656, V659). Molecular docking simulations were performed using a cryo-EM structure of hERG and a MthK-based homology model. The half-maximal inhibitory (IC50) value for WT IhERG inhibition by dronedarone was 42.6 ± 3.9 nM (n= at least 5 cells for each of 6 concentrations). 600 nM dronedarone exerted reduced WT IhERG block when the direction of K+ flux was reversed, consistent with interactions between the drug and permeant ion. In contrast with recently reported data for amiodarone, the S624A mutation did not attenuate IhERG blockade, whilst T623A and V625A channels exhibited modestly attenuated block. The S649A mutation was without significant effect and the Y652A and F656A mutations exhibited modest reductions in block. The V659A mutation produced the most marked effect on dronedarone action. Docking simulations were generally consistent with modest interactions with canonical binding residues and suggested an indirect rather than direct effect of the V659A mutation on the drug’s action. These findings leave open the possibility that as yet unexplored residue(s) could act as key determinants of high affinity hERG channel block by dronedarone.
AB - Dronedarone is a non-iodinated analogue of the Class III antiarrhythmic agent amiodarone. It exerts potent inhibition of “hERG” potassium channels that underpin the cardiac rapid delayed rectifier potassium current, IKr. This study aimed to extend understanding of interactions between dronedarone and the hERG channel. Whole-cell patch-clamp recordings were made at 37C of hERG channel current (IhERG) from HEK-293 cells expressing wild-type (WT) hERG or alanine mutants of residues in the channel’s pore-helix/selectivity filter region (T623, S624, V625) or S6 helices (S649, Y652, F656, V659). Molecular docking simulations were performed using a cryo-EM structure of hERG and a MthK-based homology model. The half-maximal inhibitory (IC50) value for WT IhERG inhibition by dronedarone was 42.6 ± 3.9 nM (n= at least 5 cells for each of 6 concentrations). 600 nM dronedarone exerted reduced WT IhERG block when the direction of K+ flux was reversed, consistent with interactions between the drug and permeant ion. In contrast with recently reported data for amiodarone, the S624A mutation did not attenuate IhERG blockade, whilst T623A and V625A channels exhibited modestly attenuated block. The S649A mutation was without significant effect and the Y652A and F656A mutations exhibited modest reductions in block. The V659A mutation produced the most marked effect on dronedarone action. Docking simulations were generally consistent with modest interactions with canonical binding residues and suggested an indirect rather than direct effect of the V659A mutation on the drug’s action. These findings leave open the possibility that as yet unexplored residue(s) could act as key determinants of high affinity hERG channel block by dronedarone.
KW - herg
KW - dronedarone
KW - Long QT syndrome
KW - antiarrhythmic
KW - amiodarone
U2 - 10.31487/j.JICOA.2018.01.002
DO - 10.31487/j.JICOA.2018.01.002
M3 - Article (Academic Journal)
SN - 2058-3702
VL - 1
SP - 1
EP - 9
JO - Journal of Integrative Cardiology
JF - Journal of Integrative Cardiology
IS - 1
ER -