TY - JOUR
T1 - An interaction map of circulating metabolites, immune gene networks, and their genetic regulation
AU - Nath, Artika P
AU - Ritchie, Scott C
AU - Byars, Sean G
AU - Fearnley, Liam G
AU - Havulinna, Aki S
AU - Joensuu, Anni
AU - Kangas, Antti J
AU - Soininen, Pasi
AU - Wennerström, Annika
AU - Milani, Lili
AU - Metspalu, Andres
AU - Männistö, Satu
AU - Würtz, Peter
AU - Kettunen, Johannes
AU - Raitoharju, Emma
AU - Kähönen, Mika
AU - Juonala, Markus
AU - Palotie, Aarno
AU - Ala-Korpela, Mika
AU - Ripatti, Samuli
AU - Lehtimäki, Terho
AU - Abraham, Gad
AU - Raitakari, Olli
AU - Salomaa, Veikko
AU - Perola, Markus
AU - Inouye, Michael
PY - 2017/8/1
Y1 - 2017/8/1
N2 - BACKGROUND: Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up.RESULTS: We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus.CONCLUSIONS: This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.
AB - BACKGROUND: Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up.RESULTS: We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus.CONCLUSIONS: This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.
KW - Amino Acids/immunology
KW - B-Lymphocytes/immunology
KW - Basophils/immunology
KW - Blood Platelets/immunology
KW - C-Reactive Protein/genetics
KW - Cardiovascular Diseases/genetics
KW - Fatty Acids/immunology
KW - Follow-Up Studies
KW - Gene Expression Regulation/immunology
KW - Gene Ontology
KW - Gene Regulatory Networks/immunology
KW - Genome, Human
KW - Humans
KW - Immunity, Innate
KW - Lipoproteins/genetics
KW - Metabolic Syndrome/genetics
KW - Metabolome/genetics
KW - Neutrophils/immunology
KW - Polymorphism, Single Nucleotide
KW - Quantitative Trait Loci/immunology
KW - Rho Guanine Nucleotide Exchange Factors/genetics
U2 - 10.1186/s13059-017-1279-y
DO - 10.1186/s13059-017-1279-y
M3 - Article (Academic Journal)
C2 - 28764798
SN - 1474-7596
VL - 18
JO - Genome Biology
JF - Genome Biology
M1 - 146
ER -