Analysis of Facial Dynamics using a Tensor Framework

LN Gralewski, NW Campbell, ER Morrison, IS Penton-Voak

Research output: Contribution to journalArticle (Academic Journal)peer-review

4 Citations (Scopus)

Abstract

Research has shown that the dynamics of facial motion are important in the perception of gender, identity, and emotion. In this paper we show that it is possible to use a multi-linear tensor framework to extract facial motion signatures and to cluster these signatures by gender or by emotion. Here, we consider only the dynamics of internal features of the face (e.g. eyebrows, eyelids and mouth) so as to remove structural and shape cues to identity and gender. Such structural gender biases include jaw width and forehead shape and their removal ensures dynamic cues alone are being used. Additionally, we demonstrate the generative capabilities of using a tensor framework, by reliably synthesising new motion signatures; and find results comparable to human psychology experiments performed on the same facial motion data.
Translated title of the contributionAnalysis of Facial Dynamics using a Tensor Framework
Original languageEnglish
Article number10-21
Pages (from-to)10 - 21
Number of pages12
JournalJournal of Multimedia
Volume1 (6)
Publication statusPublished - Sep 2006

Bibliographical note

Publisher: Academy Publisher

Fingerprint

Dive into the research topics of 'Analysis of Facial Dynamics using a Tensor Framework'. Together they form a unique fingerprint.

Cite this