TY - JOUR
T1 - Anti-nicastrin monoclonal antibodies elicit pleiotropic anti-tumour pharmacological effects in invasive breast cancer cells
AU - Filipović, Aleksandra
AU - Lombardo, Ylenia
AU - Faronato, Monica
AU - Fronato, Monica
AU - Abrahams, Joel
AU - Aboagye, Eric
AU - Nguyen, Quang-De
AU - d'Aqua, Barbara Borda
AU - Ridley, Anne
AU - Green, Andrew
AU - Rahka, Emad
AU - Ellis, Ian
AU - Recchi, Chiara
AU - Przulj, Natasa
AU - Sarajlić, Anida
AU - Alattia, Jean-Rene
AU - Fraering, Patrick
AU - Deonarain, Mahendra
AU - Coombes, R Charles
PY - 2014/11
Y1 - 2014/11
N2 - The goal of targeted cancer therapies is to specifically block oncogenic signalling, thus maximising efficacy, while reducing side-effects to patients. The gamma-secretase (GS) complex is an attractive therapeutic target in haematological malignancies and solid tumours with major pharmaceutical activity to identify optimal inhibitors. Within GS, nicastrin (NCSTN) offers an opportunity for therapeutic intervention using blocking monoclonal antibodies (mAbs). Here we explore the role of anti-nicastrin monoclonal antibodies, which we have developed as specific, multi-faceted inhibitors of proliferation and invasive traits of triple-negative breast cancer cells. We use 3D in vitro proliferation and invasion assays as well as an orthotopic and tail vail injection triple-negative breast cancer in vivo xenograft model systems. RNAScope assessed nicastrin in patient samples. Anti-NCSTN mAb clone-2H6 demonstrated a superior anti-tumour efficacy than clone-10C11 and the RO4929097 small molecule GS inhibitor, acting by inhibiting GS enzymatic activity and Notch signalling in vitro and in vivo. Confirming clinical relevance of nicastrin as a target, we report evidence of increased NCSTN mRNA levels by RNA in situ hybridization (RNAScope) in a large cohort of oestrogen receptor negative breast cancers, conferring independent prognostic significance for disease-free survival, in multivariate analysis. We demonstrate here that targeting NCSTN using specific mAbs may represent a novel mode of treatment for invasive triple-negative breast cancer, for which there are few targeted therapeutic options. Furthermore, we propose that measuring NCSTN in patient samples using RNAScope technology may serve as companion diagnostic for anti-NCSTN therapy in the clinic.
AB - The goal of targeted cancer therapies is to specifically block oncogenic signalling, thus maximising efficacy, while reducing side-effects to patients. The gamma-secretase (GS) complex is an attractive therapeutic target in haematological malignancies and solid tumours with major pharmaceutical activity to identify optimal inhibitors. Within GS, nicastrin (NCSTN) offers an opportunity for therapeutic intervention using blocking monoclonal antibodies (mAbs). Here we explore the role of anti-nicastrin monoclonal antibodies, which we have developed as specific, multi-faceted inhibitors of proliferation and invasive traits of triple-negative breast cancer cells. We use 3D in vitro proliferation and invasion assays as well as an orthotopic and tail vail injection triple-negative breast cancer in vivo xenograft model systems. RNAScope assessed nicastrin in patient samples. Anti-NCSTN mAb clone-2H6 demonstrated a superior anti-tumour efficacy than clone-10C11 and the RO4929097 small molecule GS inhibitor, acting by inhibiting GS enzymatic activity and Notch signalling in vitro and in vivo. Confirming clinical relevance of nicastrin as a target, we report evidence of increased NCSTN mRNA levels by RNA in situ hybridization (RNAScope) in a large cohort of oestrogen receptor negative breast cancers, conferring independent prognostic significance for disease-free survival, in multivariate analysis. We demonstrate here that targeting NCSTN using specific mAbs may represent a novel mode of treatment for invasive triple-negative breast cancer, for which there are few targeted therapeutic options. Furthermore, we propose that measuring NCSTN in patient samples using RNAScope technology may serve as companion diagnostic for anti-NCSTN therapy in the clinic.
KW - Amyloid Precursor Protein Secretases
KW - Animals
KW - Antibodies, Monoclonal
KW - Apoptosis
KW - Blotting, Western
KW - Cell Movement
KW - Cell Proliferation
KW - Female
KW - Flow Cytometry
KW - Gene Expression Regulation, Neoplastic
KW - Humans
KW - Membrane Glycoproteins
KW - Mice
KW - Mice, Inbred BALB C
KW - Mice, Nude
KW - Neoplasm Invasiveness
KW - Triple Negative Breast Neoplasms
KW - Tumor Cells, Cultured
KW - Xenograft Model Antitumor Assays
KW - Journal Article
KW - Research Support, Non-U.S. Gov't
U2 - 10.1007/s10549-014-3119-z
DO - 10.1007/s10549-014-3119-z
M3 - Article (Academic Journal)
C2 - 25248409
SN - 0167-6806
VL - 148
SP - 455
EP - 462
JO - Breast Cancer Research and Treatment
JF - Breast Cancer Research and Treatment
IS - 2
ER -