TY - JOUR
T1 - Antiferromagnetic order and domains in Sr3Ir2O7 probed by x-ray resonant scattering
AU - Boseggia, S.
AU - Springell, R.
AU - Walker, H. C.
AU - Boothroyd, A. T.
AU - Prabhakaran, D.
AU - Wermeille, D.
AU - Bouchenoire, L.
AU - Collins, S. P.
AU - McMorrow, D. F.
PY - 2012/5/30
Y1 - 2012/5/30
N2 - We report on a detailed x-ray resonant scattering study of the bilayer iridate compound Sr3Ir2O7 at the Ir L-2 and L-3 edges. Resonant scattering at the Ir L-3 edge has been used to determine that Sr3Ir2O7 is a long-range ordered antiferromagnet below T-N approximate to 230 K with an ordering wave vector q = (1/2, 1/2, 0). The energy resonance at the L-3 edge was found to be a factor of similar to 30 times larger than that at the L-2 edge. This remarkable effect has been seen in the single-layer compound Sr2IrO4 and has been linked to the observation of a J(eff) = 1/2 spin-orbit insulator. Our result shows that despite the modified electronic structure of the bilayer compound, caused by the larger bandwidth, the effect of strong spin-orbit coupling on the resonant magnetic scattering persists. Using the program SARAh, we have determined that the magnetic order consists of two domains with propagation vectors k(1) = (1/2, 1/2, 0) and k(2) = (1/2, -1/2, 0), respectively. A raster measurement of a focused x-ray beam across the surface of the sample yielded images of domains of the order of 100 mu m, with odd and even L components, respectively. Fully relativistic, monoelectronic calculations using the Green's function technique for a muffin-tin potential have been employed to calculate the relative intensities of the L-2,L-3 edge resonances, comparing the effects of including spin-orbit coupling and the Hubbard U term. A large L-3 to L-2 edge intensity ratio (similar to 5) was found for calculations including spin-orbit coupling. Adding the Hubbard U term had no significant effect on the calculated spectra.
AB - We report on a detailed x-ray resonant scattering study of the bilayer iridate compound Sr3Ir2O7 at the Ir L-2 and L-3 edges. Resonant scattering at the Ir L-3 edge has been used to determine that Sr3Ir2O7 is a long-range ordered antiferromagnet below T-N approximate to 230 K with an ordering wave vector q = (1/2, 1/2, 0). The energy resonance at the L-3 edge was found to be a factor of similar to 30 times larger than that at the L-2 edge. This remarkable effect has been seen in the single-layer compound Sr2IrO4 and has been linked to the observation of a J(eff) = 1/2 spin-orbit insulator. Our result shows that despite the modified electronic structure of the bilayer compound, caused by the larger bandwidth, the effect of strong spin-orbit coupling on the resonant magnetic scattering persists. Using the program SARAh, we have determined that the magnetic order consists of two domains with propagation vectors k(1) = (1/2, 1/2, 0) and k(2) = (1/2, -1/2, 0), respectively. A raster measurement of a focused x-ray beam across the surface of the sample yielded images of domains of the order of 100 mu m, with odd and even L components, respectively. Fully relativistic, monoelectronic calculations using the Green's function technique for a muffin-tin potential have been employed to calculate the relative intensities of the L-2,L-3 edge resonances, comparing the effects of including spin-orbit coupling and the Hubbard U term. A large L-3 to L-2 edge intensity ratio (similar to 5) was found for calculations including spin-orbit coupling. Adding the Hubbard U term had no significant effect on the calculated spectra.
KW - MAGNETIC SCATTERING
KW - CRYSTAL-STRUCTURE
KW - SR2IRO4
U2 - 10.1103/PhysRevB.85.184432
DO - 10.1103/PhysRevB.85.184432
M3 - Article (Academic Journal)
SN - 1098-0121
VL - 85
JO - Physical Review B: Condensed Matter and Materials Physics
JF - Physical Review B: Condensed Matter and Materials Physics
IS - 18
M1 - 184432
ER -