Arrested Bubble Rise in a Narrow Tube

Catherine Lamstaes, Jens Eggers*

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

11 Citations (Scopus)
250 Downloads (Pure)

Abstract

If a long air bubble is placed inside a vertical tube closed at the top it can rise by displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller than a critical value (Formula presented.), where (Formula presented.) is the capillary length, there is no solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation by studying the unsteady bubble motion for (Formula presented.). We find that the minimum spacing between the bubble and the tube goes to zero in limit of large t like (Formula presented.), leading to a rapid slow-down of the bubble’s mean speed (Formula presented.). As a result, the total bubble rise in infinite time remains very small, giving the appearance of arrested motion.

Original languageEnglish
Pages (from-to)656-682
Number of pages27
JournalJournal of Statistical Physics
Volume167
Issue number3
Early online date13 Jun 2016
DOIs
Publication statusPublished - May 2017

Keywords

  • Lubrication theory
  • Singularities
  • Surface tension
  • Thin film flow

Fingerprint Dive into the research topics of 'Arrested Bubble Rise in a Narrow Tube'. Together they form a unique fingerprint.

Cite this