Skip to content

Assessing Mechanisms and Uncertainty in Modeled Climatic Change at the Eocene‐Oligocene Transition

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)16-34
Number of pages19
JournalPaleoceanography and Paleoclimatology
Issue number1
Early online date16 Jan 2019
DateAccepted/In press - 12 Dec 2018
DateE-pub ahead of print - 16 Jan 2019
DatePublished (current) - 16 Feb 2019


The Earth system changed dramatically across the Eocene‐Oligocene Transition (EOT) on a variety of spatial and temporal scales. Understanding the many complex and interacting factors affecting the Earth's atmosphere and oceans at the EOT requires the combination of both data and modeling approaches and an understanding of the uncertainty in both of these elements. Here uncertainty in the Earth system response to various imposed forcings typical of changes at the EOT is assessed. By using an ensemble of simulations from the fully coupled general circulation model, HadCM3L, the uncertainty due to differences in the boundary conditions and insufficient model spin‐up is quantified. The surface temperature response in high‐latitude ocean regions, particularly where deep water formation occurs, is found to be highly sensitive to differences in boundary conditions (i.e., have the greatest magnitude of uncertainty), while low‐latitude oceans are the most insensitive to differences in boundary conditions (i.e., have the lowest magnitude of uncertainty). The length of spin‐up (or how far the model is from equilibrium) can have a significant effect on the response to some forcings and on the magnitude of uncertainty due to differences in boundary conditions. These findings are important to consider for future modeling work and for interpreting previous published simulations.

Download statistics

No data available



  • Full-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via Wiley at DOI: 10.1029/2018PA003380. Please refer to any applicable terms of use of the publisher.

    Final published version, 2.48 MB, PDF document

    Licence: CC BY


View research connections

Related faculties, schools or groups