Abstract
Consider a system of diagonal equations \begin{equation}\sum_{j=1}^sa_{ij}x_j^k=0\quad (1\le i\le r),\end{equation} satisfying the property that the (fixed) integral coefficient matrix $(a_{ij})$ contains no singular $r\times r$ submatrix. A recent paper of the authors [3] establishes that whenever $k\ge 3$ and $s>(3r+1)2^{k-2}$, then the expected asymptotic formula holds for the number $N(P)$ of integral solutions ${\bf x}$ of ($1{\cdot}1$) with $|x_i|\le P$ $(1\le i\le s)$.
Translated title of the contribution | Asympotic formulae for pairs of diagonal equations |
---|---|
Original language | English |
Pages (from-to) | 227 - 235 |
Number of pages | 7 |
Journal | Mathematical Proceedings of the Cambridge Philosophical Society |
Volume | 137 (1 |
DOIs | |
Publication status | Published - 7 Jul 2004 |