Atmospheric three-dimensional inverse modeling of regional industrial emissions and global oceanic uptake of carbon tetrachloride

X. Xiao, R. G. Prinn, P. J. Fraser, R. F. Weiss, P. G. Simmonds, S. O'Doherty, B. R. Miller, P. K. Salameh, C. M. Harth, P. B. Krummel, A. Golombek, L. W. Porter, J. H. Butler, J. W. Elkins, G. S. Dutton, B. D. Hall, L. P. Steele, R. H. J. Wang, D. M. Cunnold

Research output: Contribution to journalArticle (Academic Journal)peer-review

23 Citations (Scopus)

Abstract

Carbon tetrachloride (CCl4) has substantial stratospheric ozone depletion potential and its consumption is controlled under the Montreal Protocol and its amendments. We implement a Kalman filter using atmospheric CCl4 measurements and a 3-dimensional chemical transport model to estimate the interannual regional industrial emissions and seasonal global oceanic uptake of CCl4 for the period of 1996-2004. The Model of Atmospheric Transport and Chemistry (MATCH), driven by offline National Center for Environmental Prediction (NCEP) reanalysis meteorological fields, is used to simulate CCl4 mole fractions and calculate their sensitivities to regional sources and sinks using a finite difference approach. High frequency observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the Earth System Research Laboratory (ESRL) of the National Oceanic and Atmospheric Administration (NOAA) and low frequency flask observations are together used to constrain the source and sink magnitudes, estimated as factors that multiply the a priori fluxes. Although industry data imply that the global industrial emissions were substantially declining with large interannual variations, the optimized results show only small interannual variations and a small decreasing trend. The global surface CCl4 mole fractions were declining in this period because the CCl4 oceanic and stratospheric sinks exceeded the industrial emissions. Compared to the a priori values, the inversion results indicate substantial increases in industrial emissions originating from the South Asian/Indian and Southeast Asian regions, and significant decreases in emissions from the European and North American regions.

Original languageEnglish
Pages (from-to)10421-10434
Number of pages14
JournalAtmospheric Chemistry and Physics
Volume10
Issue number21
DOIs
Publication statusPublished - 2010

Cite this