Abstract
Anatase TiO2 is a promising material for a vast array of electronic, energy, and environmental applications, including photocatalysis, photovoltaics, and sensors. A key requirement for these applications is the ability to modulate its electrical properties without dominant dopant scattering and while maintaining high carrier mobility. Here, we demonstrate the room temperature field-effect modulation of the conducting epitaxial interface between anatase TiO2 and LaAlO3 (001), which arises for LaO-terminated LaAlO3, while the AlO2-terminated interface is insulating. This approach, together with the metal-semiconductor field-effect transistor geometry, naturally bypasses the gate/channel interface traps, resulting in a high field-effect mobility μFE of 3.14 cm2 (V s)−1 approaching 98% of the corresponding Hall mobility μHall μHall. Accordingly, the channel conductivity is modulated over 6 orders of magnitude over a gate voltage range of ∼4 V.
Original language | English |
---|---|
Article number | 133506 |
Number of pages | 4 |
Journal | Applied Physics Letters |
Volume | 112 |
Issue number | 13 |
Early online date | 29 Mar 2018 |
DOIs | |
Publication status | Published - Mar 2018 |