Abstract
Let G be a permutation group acting on a set Ω. A subset of Ω is a base for G if its pointwise stabilizer in G is trivial. We write b(G) for the minimal size of a base for G. We determine the precise value of b(G) for every primitive almost simple sporadic group G, with the exception of two cases involving the Baby Monster group. As a corollary, we deduce that b(G) is at most 7, with equality if and only if G is the Mathieu group M_24 in its natural action on 24 points. This settles a conjecture of Cameron.
Original language | English |
---|---|
Pages (from-to) | 307-334 |
Number of pages | 28 |
Journal | Israel Journal of Mathematics |
Volume | 177 |
DOIs | |
Publication status | Published - 2010 |