Bayesian Estimation of Rule Accuracy in UCS

Marshall James, Brown Gavin, Tim Kovacs

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

7 Citations (Scopus)


Learning Classifier Systems differ from many other classification techniques, in that new rules are constantly discovered and evaluated. This feature of LCS gives rise to an important problem, how to deal with estimates of rule accuracy that are unreliable due to the small number of performance samples available. In this paper we highlight the importance of this problem for LCS, summarise previous heuristic approaches to the problem, and propose instead the use of principles from Bayesian estimation. In particular we argue that discounting estimates of accuracy based on inexperience must be recognised as a crucially important part of the specification of LCS, and must be well motivated. We present experimental results on using the Bayesian approach to discounting, consider how to estimate the parameters for it, and identify benefits of its use for other areas of LCS.
Translated title of the contributionBayesian Estimation of Rule Accuracy in UCS
Original languageEnglish
Title of host publicationProceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation
PublisherAssociation for Computing Machinery (ACM)
Publication statusPublished - 2007

Bibliographical note

Other page information: 2831-2834
Conference Proceedings/Title of Journal: Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation
Other identifier: 2000697


Dive into the research topics of 'Bayesian Estimation of Rule Accuracy in UCS'. Together they form a unique fingerprint.

Cite this