Bending-buckling interaction as a failure mechanism of piles in liquefiable soils

S Bhattacharya

Research output: Contribution to journalArticle (Academic Journal)peer-review

64 Citations (Scopus)


This paper investigates the importance of bending–buckling interaction in seismic design of piles in liquefiable soils using numerical techniques. A pseudo-static analysis has been performed using a well documented case history, where the pile–soil interaction is modelled as a beam on nonlinear winkler foundation (BNWF). Six possible analytical methods, three force based and three displacement based, are performed in which the pile is subjected to both lateral and axial load. Three out of six analysis cases did not predict the failure of the piles when analysed only for bending (i.e., lateral loads only). The buckling analysis showed that the pile was also safe against pure buckling during full liquefaction. Further, two out of those three cases which did not predict failure in bending were reanalysed for bending–buckling interaction (i.e., lateral and axial loads acting simultaneously). These combined analyses showed a more realistic behaviour of pile response and did predict the pile failure. Hence, it can be concluded that if a pile is designed for bending and buckling criteria separately and safe for these individual design criteria, it may fail due to their combined effect.
Translated title of the contributionBending-buckling interaction as a failure mechanism of piles in liquefiable soils
Original languageEnglish
Pages (from-to)32 - 39
Number of pages8
JournalSoil Dynamics and Earthquake Engineering
Publication statusPublished - Jan 2010

Bibliographical note

Publisher: Elsevier


Dive into the research topics of 'Bending-buckling interaction as a failure mechanism of piles in liquefiable soils'. Together they form a unique fingerprint.

Cite this