Projects per year
Abstract
Recent years have seen a paradigm shift regarding the role of nonlinearities and elastic instabilities in engineering science and applied physics. Traditionally viewed as unwanted aberrations, when controlled to be reversible and well-behaved, nonlinearity can enable novel functionalities, such as shape-adaptation and energy harvesting. The analysis and design of novel structures that exploit nonlinearities and instabilities has, in part, been facilitated by advances in numerical continuation techniques. An experimental analogue of numerical continuation, on the other hand, has remained elusive. Traditional quasi-static experimental methods control the dis-placement or force at one or more load-introduction points over the test specimen. This approach fails at limit points in the control parameter, as the immediate equilibrium beyond limit points is statically unstable, causing the structure to snap to a different equilibrium. Here, we propose a quasi-static experimental path-following method that can continue along stable and unstable equilibria, and traverse limit points. In addition to controlling the displacement at the main load-introduction point, the technique relies on overall shape control of the structure using additional actuators and sensors. The proposed experimental method enables extended testing of the emerging class of structures that exploit nonlinearities and instabilities for novel functionality.
Original language | English |
---|---|
Number of pages | 13 |
Journal | Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences |
Volume | 476 |
Issue number | 2233 |
DOIs | |
Publication status | Published - 29 Jan 2020 |
Keywords
- experimental mechanics
- nonlinear structures
- experimental path-followingq
- structural stability
Fingerprint
Dive into the research topics of 'Beyond the Fold: Experimentally Traversing Limit Points in Nonlinear Structures'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Structural Efficiency and Multi-functionality of Well-Behaved Nonlinear Composite Structures
1/04/15 → 31/08/20
Project: Research
Prizes
-
Royal Academy of Engineering Research Fellow
Groh, Rainer (Recipient), 2018
Prize: Prizes, Medals, Awards and Grants
Datasets
-
Data for "Beyond the Fold: Experimentally Traversing Limit Points in Nonlinear Structures"
Groh, R. (Creator), Neville, R. M. (Creator), Pirrera, A. (Creator), Schenk, M. (Creator) & Pirrera, A. (Data Manager), University of Bristol, 6 Aug 2019
DOI: 10.5523/bris.1vw1mrp7hm84j2iw9o4m1whkcz, http://data.bris.ac.uk/data/dataset/1vw1mrp7hm84j2iw9o4m1whkcz
Dataset