Beyond the local climate change uplift – The importance of changes in spatial structure on future fluvial flood risk in Great Britain

Paul Sayers*, Adam Griffin, Jason Lowe, Dan Bernie, Sam Carr, Alison Kay, Lisa Stewart

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

2 Citations (Scopus)

Abstract

Widespread spatially coherent flood events can cause severe damage and disruption. Climate change has the potential to change the severity and frequency of such events. Despite this, assessment of future fluvial flood risk typically gives little to no consideration to potential changes in the spatial structure of future events. To understand the significance of this gap, climate model simulations are coupled with a national hydrological model to identify event spatially coherent present and future flood events. A statistical Empirical Copula is used to generate a large number of unseen events and linked to a national flood risk simulation model. The research finds that including changes in the spatial structure of flood events materially increases projected changes in risk when compared to conventional approaches based on local uplifts alone; increasing the projected change in Expected Annual Damage across Great Britain by a factor of ~ 1.5. The event-based approach is also shown to provide new insights into the extreme distribution fluvial risk including single event damage, damage seasons, and damage years. The results suggest the 1-in-100-year winter flood may increase from £1.3b to £2.1b, and the 1-in-100 year single event damage may rise from £1.1b today to £1.7b by the 2080s given a 4 °C rise in Global Mean Surface Temperature (assuming current adaptation policies continue and no population growth). Consequently, the findings suggest a much greater emphasis is needed on spatial ‘flood events’ if future risk is to be understood and adaptation responses appropriately framed.
Original languageEnglish
Pages (from-to)3773-3798
Number of pages26
JournalNatural Hazards
Volume120
Issue number4
Early online date19 Dec 2023
DOIs
Publication statusPublished - 1 Mar 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2023.

Fingerprint

Dive into the research topics of 'Beyond the local climate change uplift – The importance of changes in spatial structure on future fluvial flood risk in Great Britain'. Together they form a unique fingerprint.

Cite this