TY - JOUR
T1 - Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells
AU - Glennie, Sarah
AU - Soeiro, Inês
AU - Dyson, Peter J.
AU - Lam, Eric W.F.
AU - Dazzi, Francesco
PY - 2005/4/1
Y1 - 2005/4/1
N2 - It has been shown that mesenchymal stem cells (MSCs) induce T cells to become unresponsive. We characterized the phenotype of these T cells by dissecting the effect of MSCs on T-cell activation, proliferation, and effector function. For this purpose, an in vitro murine model was used in which T-cell responses were generated against the male HY minor histocompatibility antigen. In the presence of MSCs, the expression of early activation markers CD25 and CD69 was unaffected but interferon-γ (IFN-γ) production was reduced. The inhibitory effect of MSCs was directed mainly at the level of cell proliferation. Analysis of the cell cycle showed that T cells, stimulated in the presence of MSCs, were arrested at the G1 phase. At the molecular level, cyclin D2 expression was profoundly inhibited, whereas p27kip1 was up-regulated. When MSCs were removed from the cultures and restimulated with the cognate peptide, T cells produced IFN-γ but failed to proliferate. The addition of exogenous interleukin-2 (IL-2) did not restore proliferation. MSCs did not preferentially target any T-cell subset, and the inhibition was also extended to B cells. MSC-mediated inhibition induces an unresponsive T-cell profile that is fully consistent with that observed in division arrest anergy.
AB - It has been shown that mesenchymal stem cells (MSCs) induce T cells to become unresponsive. We characterized the phenotype of these T cells by dissecting the effect of MSCs on T-cell activation, proliferation, and effector function. For this purpose, an in vitro murine model was used in which T-cell responses were generated against the male HY minor histocompatibility antigen. In the presence of MSCs, the expression of early activation markers CD25 and CD69 was unaffected but interferon-γ (IFN-γ) production was reduced. The inhibitory effect of MSCs was directed mainly at the level of cell proliferation. Analysis of the cell cycle showed that T cells, stimulated in the presence of MSCs, were arrested at the G1 phase. At the molecular level, cyclin D2 expression was profoundly inhibited, whereas p27kip1 was up-regulated. When MSCs were removed from the cultures and restimulated with the cognate peptide, T cells produced IFN-γ but failed to proliferate. The addition of exogenous interleukin-2 (IL-2) did not restore proliferation. MSCs did not preferentially target any T-cell subset, and the inhibition was also extended to B cells. MSC-mediated inhibition induces an unresponsive T-cell profile that is fully consistent with that observed in division arrest anergy.
UR - http://www.scopus.com/inward/record.url?scp=15944376184&partnerID=8YFLogxK
U2 - 10.1182/blood-2004-09-3696
DO - 10.1182/blood-2004-09-3696
M3 - Article (Academic Journal)
C2 - 15591115
AN - SCOPUS:15944376184
VL - 105
SP - 2821
EP - 2827
JO - Blood
JF - Blood
SN - 0006-4971
IS - 7
ER -