Both electronic and vibrational coherences are involved in primary electron transfer in bacterial reaction center

Fei Ma*, Elisabet Romero, Michael R Jones, Vladimir I. Novoderezhkin, Rienk van Grondelle

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

35 Citations (Scopus)
235 Downloads (Pure)

Abstract

Understanding the mechanism behind the near-unity efficiency of primary electron transfer in reaction centers is essential for designing performance-enhanced artificial solar conversion systems to fulfill mankind’s growing demands for energy. One of the most important challenges is distinguishing electronic and vibrational coherence and establishing their respective roles during charge separation. In this work we apply two-dimensional electronic spectroscopy to three structurally-modified reaction centers from the purple bacterium Rhodobacter sphaeroides with different primary electron transfer rates. By comparing dynamics and quantum beats, we reveal that an electronic coherence with dephasing lifetime of ~190 fs connects the initial excited state, P*, and the charge-transfer intermediate PA+PB-; this P*→PA+PB- step is associated with a long-lived quasi-resonant vibrational coherence; and another vibrational coherence is associated with stabilizing the primary photoproduct, P+BA-. The results show that both electronic and vibrational coherences are involved in primary electron transfer process and they correlate with the super-high efficiency.

Original languageEnglish
Article number933
Number of pages12
JournalNature Communications
Volume10
Issue number1
DOIs
Publication statusPublished - 25 Feb 2019

Keywords

  • electron transfer
  • Reaction kinetics and dynamics
  • Optical spectroscopy

Fingerprint

Dive into the research topics of 'Both electronic and vibrational coherences are involved in primary electron transfer in bacterial reaction center'. Together they form a unique fingerprint.

Cite this