Boundary crisis bifurcation in two parameters

Hinke M Osinga

Research output: Working paper

506 Downloads (Pure)


The boundary crisis bifurcation is well known as a mechanism for destroying (or creating) a strange attractor by variation of one parameter: at the moment of the boundary crisis bifurcation the strange attractor touches its own basin of attraction. Here we follow this codimension-one bifurcation in two parameters. One might expect that this leads to a smooth curve in the two-parameter plane. Mathematically, a boundary crisis is effectively a homoclinic or heteroclinic tangency, the locus of which is a well-defined smooth curve in a two-parameter system. However, instead of a boundary crisis, the transition through this tangency curve may lead to a basin boundary metamorphosis or an interior crisis bifurcation, in which the attractor persists. This phenomenon is again well known: at the point where the type of transition changes, the boundary crisis switches to another branch of homoclinic or heteroclinic tangencies, associated with manifolds of a periodic point with a different period than before. The curve of boundary crisis bifurcations is not differentiable at such points. In this paper we show that the curve of boundary crisis bifurcations is, in fact, not even well defined as a piecewise-smooth curve. We illustrate that there are infinitely many gaps in much the same way as the one-parameter bifurcation diagram of the attractor contains infinitely many windows where the attractor is periodic and not strange or chaotic. Throughout, we use the Henon map to illustrate our findings.
Original languageEnglish
Publication statusPublished - Feb 2006

Bibliographical note

Sponsorship: EPSRC Advanced Research Fellowship grant


  • boundary crisis
  • heteroclinic tangency


Dive into the research topics of 'Boundary crisis bifurcation in two parameters'. Together they form a unique fingerprint.

Cite this