Broken Time Translation Symmetry as a Model for Quantum State Reduction

Jasper van Wezel

Research output: Contribution to journalArticle (Academic Journal)peer-review

5 Citations (Scopus)

Abstract

The symmetries that govern the laws of nature can be spontaneously broken, enabling the occurrence of ordered states. Crystals arise from the breaking of translation symmetry, magnets from broken spin rotation symmetry and massive particles break a phase rotation symmetry. Time translation symmetry can be spontaneously broken in exactly the same way. The order associated with this form of spontaneous symmetry breaking is characterised by the emergence of quantum state reduction: systems which spontaneously break time translation symmetry act as ideal measurement machines. In this review the breaking of time translation symmetry is first compared to that of other symmetries such as spatial translations and rotations. It is then discussed how broken time translation symmetry gives rise to the process of quantum state reduction and how it generates a pointer basis, Born’s rule, etc. After a comparison between this model and alternative approaches to the problem of quantum state reduction, the experimental implications and possible tests of broken time translation symmetry in realistic experimental settings are discussed.
Original languageEnglish
Pages (from-to)582-608
JournalSymmetry
DOIs
Publication statusPublished - 1 Apr 2010

Fingerprint Dive into the research topics of 'Broken Time Translation Symmetry as a Model for Quantum State Reduction'. Together they form a unique fingerprint.

Cite this