Projects per year
Abstract
A vision model is designed using low-level vision principles so that it can perform as a human observer model for camouflage assessment. In a camouflaged-object assessment task, using military patterns in an outdoor environment, human performance at detection and recognition is compared with the human observer model. This involved field data acquisition and subsequent image calibration, a human experiment, and the design of the vision model. Human and machine performance, at recognition and detection, of military patterns in two environments was found to correlate highly. Our model offers an inexpensive, automated, and objective method for the assessment of camouflage where it is impractical, or too expensive, to use human observers to evaluate the conspicuity of a large number of candidate patterns. Furthermore, the method should generalize to the assessment of visual conspicuity in non-military contexts.
Original language | English |
---|---|
Pages (from-to) | 173-182 |
Number of pages | 10 |
Journal | Computers in Industry |
Volume | 99 |
Early online date | 3 Apr 2018 |
DOIs | |
Publication status | Published - 1 Aug 2018 |
Research Groups and Themes
- Cognitive Science
- Visual Perception
Keywords
- Camouflage Assessment
- Observer Modelling
- Visual Search
Fingerprint
Dive into the research topics of 'Camouflage assessment: Machine and human'. Together they form a unique fingerprint.Projects
- 1 Finished
-
The Camouflage machine: optimising patterns for camouflage and visibility
Scott-Samuel, N. E. (Principal Investigator), Cuthill, I. C. (Co-Investigator), Baddeley, R. J. (Co-Investigator), Talas, L. (Researcher) & Fennell, J. G. (Researcher)
1/06/15 → 31/05/18
Project: Research